Function to prepare and score data, finally predict current market type using pre-trained classification model
PURPOSE: Function that uses Deep Learning model and Time Series Column of the dataframe to find out specific market type of the financial asset it will also discard bad result outputting -1 if it is the case
mt_stat_evaluate(x, path_model, num_bars, timeframe)
x
: * dataframe with one column containing asset indicator in the time descending order, typically 64 or more valuespath_model
: String, path to the modelnum_bars
: Integer, Number of bars used to perform transformationtimeframe
: Integer, timeframe in Minutes.dataframe with predicted value of the market type
library(h2o) library(magrittr) library(dplyr) library(readr) library(lazytrade) library(stats) path_model <- normalizePath(tempdir(),winslash = "/") path_data <- normalizePath(tempdir(),winslash = "/") # start h2o engine (using all CPU's by default) h2o.init(nthreads = 2) data(price_dataset_big) data <- head(price_dataset_big, 500) #reduce computational time ai_class <- mt_stat_transf(indicator_dataset = data, num_bars = 64, timeframe = 60, path_data = path_data, mt_classes = c('BUN', 'BEN', 'RAN')) # performing Deep Learning Classification using the custom function auto clustered data mt_make_model(indicator_dataset = ai_class, num_bars = 64, timeframe = 60, path_model = path_model, path_data = path_data, activate_balance = TRUE, num_nn_options = 3, num_epoch = 10, is_cluster = TRUE) # Use sample data data(price_dataset) # use one column for testing x <- price_dataset[ ,2] mt_stat_evaluate(x = x, path_model = path_model, num_bars = 64, timeframe = 60) h2o.shutdown(prompt = FALSE) #set delay to insure h2o unit closes properly before the next test Sys.sleep(5)
(C) 2021 Vladimir Zhbanko
Useful links