Compute feature contribution of prediction
Computes feature contribution components of rawscore prediction.
lgb.interprete(model, data, idxset, num_iteration = NULL)
model
: object of class lgb.Booster
.data
: a matrix object or a dgCMatrix object.idxset
: an integer vector of indices of rows needed.num_iteration
: number of iteration want to predict with, NULL or <= 0 means use best iteration.For regression, binary classification and lambdarank model, a list
of data.table
with the following columns:
Feature
: Feature names in the model.Contribution
: The total contribution of this feature's splits.For multiclass classification, a list
of data.table
with the Feature column and Contribution columns to each class.
Logit <- function(x) log(x / (1.0 - x)) data(agaricus.train, package = "lightgbm") train <- agaricus.train dtrain <- lgb.Dataset(train$data, label = train$label) set_field( dataset = dtrain , field_name = "init_score" , data = rep(Logit(mean(train$label)), length(train$label)) ) data(agaricus.test, package = "lightgbm") test <- agaricus.test params <- list( objective = "binary" , learning_rate = 0.1 , max_depth = -1L , min_data_in_leaf = 1L , min_sum_hessian_in_leaf = 1.0 , num_threads = 2L ) model <- lgb.train( params = params , data = dtrain , nrounds = 3L ) tree_interpretation <- lgb.interprete(model, test$data, 1L:5L)