lgb.plot.interpretation function

Plot feature contribution as a bar graph

Plot feature contribution as a bar graph

Plot previously calculated feature contribution as a bar graph.

lgb.plot.interpretation( tree_interpretation_dt, top_n = 10L, cols = 1L, left_margin = 10L, cex = NULL )

Arguments

  • tree_interpretation_dt: a data.table returned by lgb.interprete.
  • top_n: maximal number of top features to include into the plot.
  • cols: the column numbers of layout, will be used only for multiclass classification feature contribution.
  • left_margin: (base R barplot) allows to adjust the left margin size to fit feature names.
  • cex: (base R barplot) passed as cex.names parameter to barplot.

Returns

The lgb.plot.interpretation function creates a barplot.

Details

The graph represents each feature as a horizontal bar of length proportional to the defined contribution of a feature. Features are shown ranked in a decreasing contribution order.

Examples

Logit <- function(x) { log(x / (1.0 - x)) } data(agaricus.train, package = "lightgbm") labels <- agaricus.train$label dtrain <- lgb.Dataset( agaricus.train$data , label = labels ) set_field( dataset = dtrain , field_name = "init_score" , data = rep(Logit(mean(labels)), length(labels)) ) data(agaricus.test, package = "lightgbm") params <- list( objective = "binary" , learning_rate = 0.1 , max_depth = -1L , min_data_in_leaf = 1L , min_sum_hessian_in_leaf = 1.0 , num_threads = 2L ) model <- lgb.train( params = params , data = dtrain , nrounds = 5L ) tree_interpretation <- lgb.interprete( model = model , data = agaricus.test$data , idxset = 1L:5L ) lgb.plot.interpretation( tree_interpretation_dt = tree_interpretation[[1L]] , top_n = 3L )
  • Maintainer: James Lamb
  • License: MIT + file LICENSE
  • Last published: 2025-02-13