lmtp_control function

Set LMTP Estimation Parameters

Set LMTP Estimation Parameters

lmtp_control( .bound = 1e+05, .trim = 0.999, .learners_outcome_folds = 10, .learners_trt_folds = 10, .return_full_fits = FALSE )

Arguments

  • .bound: [numeric(1)]

    Determines that maximum and minimum values (scaled) predictions will be bounded by. The default is 1e-5, bounding predictions by 1e-5 and 0.9999.

  • .trim: [numeric(1)]

    Determines the amount the density ratios should be trimmed. The default is 0.999, trimming the density ratios greater than the 0.999 percentile to the 0.999 percentile. A value of 1 indicates no trimming.

  • .learners_outcome_folds: [integer(1)]

    The number of cross-validation folds for learners_outcome.

  • .learners_trt_folds: [integer(1)]

    The number of cross-validation folds for learners_trt.

  • .return_full_fits: [logical(1)]

    Return full SuperLearner fits? Default is FALSE, return only SuperLearner weights.

Returns

A list of parameters controlling the estimation procedure.

Examples

lmtp_control(.trim = 0.975)