Probability density function (doldlogspline), distribution function (poldlogspline), quantiles (qoldlogspline), and random samples (roldlogspline) from a logspline density that was fitted using the 1992 knot deletion algorithm (oldlogspline). The 1997 algorithm using knot deletion and addition is available using the logspline function.
q: vector of quantiles. Missing values (NAs) are allowed.
p: vector of probabilities. Missing values (NAs) are allowed.
n: sample size. If length(n) is larger than 1, then length(n) random values are returned.
fit: oldlogspline object, typically the result of oldlogspline.
Returns
Densities (doldlogspline), probabilities (poldlogspline), quantiles (qoldlogspline), or a random sample (roldlogspline) from an oldlogspline density that was fitted using knot deletion.
Details
Elements of q or p that are missing will cause the corresponding elements of the result to be missing.
References
Charles Kooperberg and Charles J. Stone. Logspline density estimation for censored data (1992). Journal of Computational and Graphical Statistics, 1 , 301--328.
Charles J. Stone, Mark Hansen, Charles Kooperberg, and Young K. Truong. The use of polynomial splines and their tensor products in extended linear modeling (with discussion) (1997). Annals of Statistics, 25 , 1371--1470.
x <- rnorm(100)fit <- oldlogspline(x)qq <- qoldlogspline((1:99)/100, fit)plot(qnorm((1:99)/100), qq)# qq plot of the fitted densitypp <- poldlogspline((-250:250)/100, fit)plot((-250:250)/100, pp, type ="l")lines((-250:250)/100, pnorm((-250:250)/100))# asses the fit of the distributiondd <- doldlogspline((-250:250)/100, fit)plot((-250:250)/100, dd, type ="l")lines((-250:250)/100, dnorm((-250:250)/100))# asses the fit of the densityrr <- roldlogspline(100, fit)# random sample from fit