lqmm1.5.8 package

Linear Quantile Mixed Models

summary.lqm

Summary for an lqm Object

summary.lqmm

Summary for an lqmm Object

VarCorr

Extract Variance-Covariance Matrix

boot

Bootstrap functions for LQM and LQMM

coef.lqm

Extract LQM Coefficients

coef.lqmm

Extract LQMM Coefficients

covHandling

Variance-Covariance Matrix

dal

The Asymmetric Laplace Distribution

extractBoot

Extract Fixed and Random Bootstrapped Parameters

gauss.quad.prob

Gaussian Quadrature

gauss.quad

Gaussian Quadrature

is.positive.definite

Test for Positive Definiteness

logLik.lqm

Extract Log-Likelihood

logLik.lqmm

Extract Log-Likelihood

lqm.counts

Quantile Regression for Counts

lqm.fit.gs

Quantile Regression Fitting by Gradient Search

lqm

Fitting Linear Quantile Models

lqmControl

Control parameters for lqm estimation

lqmm-internal

Internal lqmm objects

lqmm-package

Linear Quantile Models and Linear Quantile Mixed Models

lqmm.fit.df

Linear Quantile Mixed Models Fitting by Derivative-Free Optimization

lqmm.fit.gs

Linear Quantile Mixed Models Fitting by Gradient Search

lqmm

Fitting Linear Quantile Mixed Models

lqmmControl

Control parameters for lqmm estimation

make.positive.definite

Compute Nearest Positive Definite Matrix

meanAL

Functions for Asymmetric Laplace Distribution Parameters

mleAL

Maximum Likelihood Estimation of Asymmetric Laplace Distribution

predict.lqm

Predictions from LQM Objects

predict.lqmm

Predictions from an lqmm Object

print.lqm

Print LQM Objects

print.lqmm

Print an lqmm Object

print.summary.lqm

Print an lqm Summary Object

print.summary.lqmm

Print an lqmm Summary Object

ranef

Extract Random Effects

residuals.lqm

Residuals from an LQM Objects

residuals.lqmm

Residuals from an lqmm Object

summary.boot.lqm

Summary for a boot.lqm Object

summary.boot.lqmm

Summary for a boot.lqmm Object

Functions to fit quantile regression models for hierarchical data (2-level nested designs) as described in Geraci and Bottai (2014, Statistics and Computing) <doi:10.1007/s11222-013-9381-9>. A vignette is given in Geraci (2014, Journal of Statistical Software) <doi:10.18637/jss.v057.i13> and included in the package documents. The packages also provides functions to fit quantile models for independent data and for count responses.

  • Maintainer: Marco Geraci
  • License: GPL (>= 2)
  • Last published: 2022-04-06