lrmest3.0 package

Different Types of Estimators to Deal with Multicollinearity

alte1

Type (1) Adjusted Liu Estimator

alte2

Type (2) Adjusted Liu Estimator

alte3

Type (3) Adjusted Liu Estimator

aul

Almost Unbiased Liu Estimator

aur

Almost Unbiased Ridge Estimator

checkm

Check the degree of multicollinearity present in the dataset

liu

Liu Estimator

lrmest2-package

Estimation of varies types of estimators in the linear model

lte1

Type (1) Liu Estimator

lte2

Type (2) Liu Estimator

lte3

Type (3) Liu Estimator

mixe

Ordinary Mixed Regression Estimator

ogalt1

Ordinary Generalized Type (1) Adjusted Liu Estimator

ogalt2

Ordinary Generalized Type (2) Adjusted Liu Estimator

ogalt3

Ordinary Generalized Type (3) Adjusted Liu Estimator

ogaul

Ordinary Generalized Almost Unbiased Liu Estimator

ogaur

Ordinary Generalized Almost Unbiased Ridge Estimator

ogliu

Ordinary Generalized Liu Estimator

oglt1

Ordinary Generalized Type (1) Liu Estimator

oglt2

Ordinary Generalized Type (2) Liu Estimator

oglt3

Ordinary Generalized Type (3) Liu Estimator

ogmix

Ordinary Generalized Mixed Regression Estimator

ogols

Ordinary Generalized Ordinary Least Square Estimators

ogre

Ordinary Generalized Ridge Regression Estimator

ogrliu

Ordinary Generalized Restricted Liu Estimator

ogrls

Ordinary Generalized Restricted Least Square Estimator

ogrrre

Ordinary Generalized Restricted Ridge Regression Estimator

ogsrliu

Ordinary Generalized Stochastic Restricted Liu Estimator

ogsrre

Ordinary Generalized Stochastic Restricted Ridge Estimator

ols

Ordinary Least Square Estimators

optimum

Summary of optimum scalar Mean Square Error values of all estimators a...

rid

Ordinary Ridge Regression Estimator

rliu

Restricted Liu Estimator

rls

Restricted Least Square Estimator

rrre

Restricted Ridge Regression Estimator

srliu

Stochastic Restricted Liu Estimator

srre

Stochastic Restricted Ridge Estimator

When multicollinearity exists among predictor variables of the linear model, least square estimators does not provide a better solution for estimating parameters. To deal with multicollinearity several estimators are proposed in the literature. Some of these estimators are Ordinary Least Square Estimator (OLSE), Ordinary Generalized Ordinary Least Square Estimator (OGOLSE), Ordinary Ridge Regression Estimator (ORRE), Ordinary Generalized Ridge Regression Estimator (OGRRE), Restricted Least Square Estimator (RLSE), Ordinary Generalized Restricted Least Square Estimator (OGRLSE), Ordinary Mixed Regression Estimator (OMRE), Ordinary Generalized Mixed Regression Estimator (OGMRE), Liu Estimator (LE), Ordinary Generalized Liu Estimator (OGLE), Restricted Liu Estimator (RLE), Ordinary Generalized Restricted Liu Estimator (OGRLE), Stochastic Restricted Liu Estimator (SRLE), Ordinary Generalized Stochastic Restricted Liu Estimator (OGSRLE), Type (1),(2),(3) Liu Estimator (Type-1,2,3 LTE), Ordinary Generalized Type (1),(2),(3) Liu Estimator (Type-1,2,3 OGLTE), Type (1),(2),(3) Adjusted Liu Estimator (Type-1,2,3 ALTE), Ordinary Generalized Type (1),(2),(3) Adjusted Liu Estimator (Type-1,2,3 OGALTE), Almost Unbiased Ridge Estimator (AURE), Ordinary Generalized Almost Unbiased Ridge Estimator (OGAURE), Almost Unbiased Liu Estimator (AULE), Ordinary Generalized Almost Unbiased Liu Estimator (OGAULE), Stochastic Restricted Ridge Estimator (SRRE), Ordinary Generalized Stochastic Restricted Ridge Estimator (OGSRRE), Restricted Ridge Regression Estimator (RRRE) and Ordinary Generalized Restricted Ridge Regression Estimator (OGRRRE). To select the best estimator in a practical situation the Mean Square Error (MSE) is used. Using this package scalar MSE value of all the above estimators and Prediction Sum of Square (PRESS) values of some of the estimators can be obtained, and the variation of the MSE and PRESS values for the relevant estimators can be shown graphically.

  • Maintainer: Ajith Dissanayake
  • License: GPL-2 | GPL-3
  • Last published: 2016-05-14