Different Types of Estimators to Deal with Multicollinearity
Type (1) Adjusted Liu Estimator
Type (2) Adjusted Liu Estimator
Type (3) Adjusted Liu Estimator
Almost Unbiased Liu Estimator
Almost Unbiased Ridge Estimator
Check the degree of multicollinearity present in the dataset
Liu Estimator
Estimation of varies types of estimators in the linear model
Type (1) Liu Estimator
Type (2) Liu Estimator
Type (3) Liu Estimator
Ordinary Mixed Regression Estimator
Ordinary Generalized Type (1) Adjusted Liu Estimator
Ordinary Generalized Type (2) Adjusted Liu Estimator
Ordinary Generalized Type (3) Adjusted Liu Estimator
Ordinary Generalized Almost Unbiased Liu Estimator
Ordinary Generalized Almost Unbiased Ridge Estimator
Ordinary Generalized Liu Estimator
Ordinary Generalized Type (1) Liu Estimator
Ordinary Generalized Type (2) Liu Estimator
Ordinary Generalized Type (3) Liu Estimator
Ordinary Generalized Mixed Regression Estimator
Ordinary Generalized Ordinary Least Square Estimators
Ordinary Generalized Ridge Regression Estimator
Ordinary Generalized Restricted Liu Estimator
Ordinary Generalized Restricted Least Square Estimator
Ordinary Generalized Restricted Ridge Regression Estimator
Ordinary Generalized Stochastic Restricted Liu Estimator
Ordinary Generalized Stochastic Restricted Ridge Estimator
Ordinary Least Square Estimators
Summary of optimum scalar Mean Square Error values of all estimators a...
Ordinary Ridge Regression Estimator
Restricted Liu Estimator
Restricted Least Square Estimator
Restricted Ridge Regression Estimator
Stochastic Restricted Liu Estimator
Stochastic Restricted Ridge Estimator
When multicollinearity exists among predictor variables of the linear model, least square estimators does not provide a better solution for estimating parameters. To deal with multicollinearity several estimators are proposed in the literature. Some of these estimators are Ordinary Least Square Estimator (OLSE), Ordinary Generalized Ordinary Least Square Estimator (OGOLSE), Ordinary Ridge Regression Estimator (ORRE), Ordinary Generalized Ridge Regression Estimator (OGRRE), Restricted Least Square Estimator (RLSE), Ordinary Generalized Restricted Least Square Estimator (OGRLSE), Ordinary Mixed Regression Estimator (OMRE), Ordinary Generalized Mixed Regression Estimator (OGMRE), Liu Estimator (LE), Ordinary Generalized Liu Estimator (OGLE), Restricted Liu Estimator (RLE), Ordinary Generalized Restricted Liu Estimator (OGRLE), Stochastic Restricted Liu Estimator (SRLE), Ordinary Generalized Stochastic Restricted Liu Estimator (OGSRLE), Type (1),(2),(3) Liu Estimator (Type-1,2,3 LTE), Ordinary Generalized Type (1),(2),(3) Liu Estimator (Type-1,2,3 OGLTE), Type (1),(2),(3) Adjusted Liu Estimator (Type-1,2,3 ALTE), Ordinary Generalized Type (1),(2),(3) Adjusted Liu Estimator (Type-1,2,3 OGALTE), Almost Unbiased Ridge Estimator (AURE), Ordinary Generalized Almost Unbiased Ridge Estimator (OGAURE), Almost Unbiased Liu Estimator (AULE), Ordinary Generalized Almost Unbiased Liu Estimator (OGAULE), Stochastic Restricted Ridge Estimator (SRRE), Ordinary Generalized Stochastic Restricted Ridge Estimator (OGSRRE), Restricted Ridge Regression Estimator (RRRE) and Ordinary Generalized Restricted Ridge Regression Estimator (OGRRRE). To select the best estimator in a practical situation the Mean Square Error (MSE) is used. Using this package scalar MSE value of all the above estimators and Prediction Sum of Square (PRESS) values of some of the estimators can be obtained, and the variation of the MSE and PRESS values for the relevant estimators can be shown graphically.