Latent variable graphical LASSO using EBIC to select optimal tuning parameter
This function minimizes the Extended Bayesian Information Criterion (EBIC; Chen and Chen, 2008) to choose the lvglasso tuning parameter. See lvglasso
EBIClvglasso(S, n, nLatents, gamma = 0.5, nRho = 100, lambda, ...)
S
: Sample variance-covariance matrixn
: Sample SizenLatents
: Number of latent variablesgamma
: EBIC hyper-parameternRho
: Number of tuning parameters to testlambda
: The lambda argument containing factor loadings, only used for starting values!...
: Arguments sent to lvglasso
The optimal result of lvglasso
, with two more elements: - rho: The selected tuning parameter
Chen, J., & Chen, Z. (2008). Extended Bayesian information criteria for model selection with large model spaces. Biometrika, 95(3), 759-771.
Sacha Epskamp mail@sachaepskamp.com
lvglasso
Useful links