EBIClvglasso function

Latent variable graphical LASSO using EBIC to select optimal tuning parameter

Latent variable graphical LASSO using EBIC to select optimal tuning parameter

This function minimizes the Extended Bayesian Information Criterion (EBIC; Chen and Chen, 2008) to choose the lvglasso tuning parameter. See lvglasso

EBIClvglasso(S, n, nLatents, gamma = 0.5, nRho = 100, lambda, ...)

Arguments

  • S: Sample variance-covariance matrix
  • n: Sample Size
  • nLatents: Number of latent variables
  • gamma: EBIC hyper-parameter
  • nRho: Number of tuning parameters to test
  • lambda: The lambda argument containing factor loadings, only used for starting values!
  • ...: Arguments sent to lvglasso

Returns

The optimal result of lvglasso, with two more elements: - rho: The selected tuning parameter

  • ebic: The optimal EBIC

References

Chen, J., & Chen, Z. (2008). Extended Bayesian information criteria for model selection with large model spaces. Biometrika, 95(3), 759-771.

Author(s)

Sacha Epskamp mail@sachaepskamp.com

See Also

lvglasso

  • Maintainer: Sacha Epskamp
  • License: GPL-2
  • Last published: 2019-06-21

Useful links