lassoSelect function

Update lvnatLasso results to select a different model

Update lvnatLasso results to select a different model

This function can be used to select a model using any fit index

lassoSelect(object, select, minimize = TRUE, refit = TRUE, lassoTol = 1e-04)

Arguments

  • object: An lvnetLasso object
  • select: A raw R expression using names used in the object$fitMeasures part of the output of lvnet
  • minimize: Logical. Minimize or maximize?
  • refit: Logical. Should the new best model be refitted.
  • lassoTol: Tolerance for absolute values to be treated as zero in counting parameters.

Author(s)

Sacha Epskamp mail@sachaepskamp.com

Examples

## Not run: # Load dataset: library("lavaan") data(HolzingerSwineford1939) Data <- HolzingerSwineford1939[,7:15] # Measurement model: Lambda <- matrix(0, 9, 3) Lambda[1:3,1] <- NA Lambda[4:6,2] <- NA Lambda[7:9,3] <- NA # Search best fitting omega_theta: res <- lvnetLasso(Data, "omega_theta", lambda = Lambda) res$best summary(res) # Update to use EBIC: resEBIC <- lassoSelect(res, ebic) summary(resEBIC) # Update to use minimal fitting model with RMSEA < 0.05: resMinimal <- lassoSelect(res, df * (rmsea < 0.05), minimize = FALSE) summary(resMinimal) ## End(Not run)
  • Maintainer: Sacha Epskamp
  • License: GPL-2
  • Last published: 2019-06-21

Useful links