Density, distribution function, quantile function and pseudorandom number generation for the exponentially tilted mixture of beta distributions, with shapes (i+1,m−i+1), i=0,…,m, given mixture proportions p=(p0,…,pm) and support interval.
p: a vector of m+1 components of p must be nonnegative and sum to one for mixture beta distribution. See 'Details'.
alpha: regression coefficients
interval: support/truncation interval [a, b].
regr: regressor vector function r(x)=(1,r1(x),...,rd(x))
which returns n x (d+1) matrix, n=length(x)
...: additional arguments to be passed to regr
u: a vector of probabilities
n: sample size
Returns
A vector of fm(x;p) or Fm(x;p) values at x. dmixbeta returns the density, pmixbeta returns the cumulative distribution function, qmixbeta returns the quantile function, and rmixbeta generates pseudo random numbers.
Details
The density of the mixture exponentially tilted beta distribution on an interval [a,b] can be written c("fm(x;p)=(b−a)−1exp(alpha′r(x))\n", "sumi=0mpibetami[(x−a)/(b−a)]/(b−a)"), where p=(p0,…,pm), pi≥0, ∑i=0mpi=1 and βmi(u)=(m+1)(im)ui(1−x)m−i, i=0,1,…,m, is the beta density with shapes (i+1,m−i+1). The cumulative distribution function is Fm(x;p)=∑i=0mpiBmi[(x−a)/(b−a);alpha], where Bmi(u;alpha), i=0,1,…,m, is the exponentially tilted beta cumulative distribution function with shapes (i+1,m−i+1).