mable.hellcorr function

Estimate of Hellinger Correlation between two random variables and Bootstrap

Estimate of Hellinger Correlation between two random variables and Bootstrap

mable.hellcorr( x, unif.mar = FALSE, pseudo.obs = c("empirical", "mable"), M0 = c(1, 1), M = c(30, 30), search = TRUE, mar.deg = TRUE, high.dim = FALSE, interval = cbind(0:1, 0:1), B = 200L, conf.level = 0.95, integral = TRUE, controls = mable.ctrl(sig.level = 0.05), progress = FALSE ) hellcorr( x, unif.mar = FALSE, pseudo.obs = c("empirical", "mable"), M0 = c(1, 1), M = c(30, 30), search = TRUE, mar.deg = TRUE, high.dim = FALSE, interval = cbind(0:1, 0:1), B = 200L, conf.level = 0.95, integral = TRUE, controls = mable.ctrl(sig.level = 0.05), progress = FALSE )

Arguments

  • x: an n x 2 data matrix of observations of the two random variables

  • unif.mar: logical, whether all the marginals distributions are uniform or not. If not the pseudo observations will be created using empirical or mable

    marginal distributions.

  • pseudo.obs: "empirical": use empirical distribution to form pseudo, observations, or "mable": use mable of marginal cdfs to form pseudo observations

  • M0: a nonnegative integer or a vector of d nonnegative integers specify starting candidate degrees for searching optimal degrees.

  • M: a positive integer or a vector of d positive integers specify the maximum candidate or the given model degrees for the joint density.

  • search: logical, whether to search optimal degrees between M0 and M

    or not but use M as the given model degrees for the joint density.

  • mar.deg: logical, if TRUE (default), the optimal degrees are selected based on marginal data, otherwise, the optimal degrees are chosen by the method of change-point. See details.

  • high.dim: logical, data are high dimensional/large sample or not if TRUE, run a slower version procedure which requires less memory

  • interval: a 2 by 2 matrix, columns are the marginal supports

  • B: the number of bootstrap samples and number of Monte Carlo runs for estimating p.value of the test for Hellinger correlation = 0 if test=TRUE.

  • conf.level: confidence level

  • integral: logical, using "integrate()" or not (Riemann sum)

  • controls: Object of class mable.ctrl() specifying iteration limit and the convergence criterion eps. Default is mable.ctrl. See Details.

  • progress: if TRUE a text progressbar is displayed

Returns

  • eta Hellinger correlation
  • CI.eta Bootstrap confidence interval for Hellinger correlation if B>0.

Details

This function calls mable.copula() for estimation of the copula density.

References

Guan, Z., Nonparametric Maximum Likelihood Estimation of Copula

See Also

mable, mable.mvar, mable.copula

Author(s)

Zhong Guan zguan@iu.edu

  • Maintainer: Zhong Guan
  • License: LGPL (>= 2.0, < 3)
  • Last published: 2024-10-01

Useful links