## S3 method for class 'delta_med'print(x, digits =3, level =NULL, full =FALSE, boot_type,...)
Arguments
x: A delta_med-class object.
digits: The number of digits after the decimal. Default is 3.
level: The level of confidence of bootstrap confidence interval, if requested when created. If NULL, the default, the level requested when calling delta_med() is used. If not null, then this level will be used.
full: Logical. Whether additional information will be printed. Default is FALSE.
boot_type: If bootstrap confidence interval is to be formed, the type of bootstrap confidence interval. The supported types are "perc" (percentile bootstrap confidence interval, the recommended method) and "bc"
(bias-corrected, or BC, bootstrap confidence interval). If not supplied, the stored boot_type will be used.
...: Optional arguments. Ignored.
Returns
x is returned invisibly. Called for its side effect.
Details
It prints the output of delta_med(), which is a delta_med-class object.
Examples
library(lavaan)dat <- data_med
mod <-"
m ~ x
y ~ m + x
"
fit <- sem(mod, dat)dm <- delta_med(x ="x", y ="y", m ="m", fit = fit)dm
print(dm, full =TRUE)# Call do_boot() to generate# bootstrap estimates# Use 2000 or even 5000 for R in real studies# Set parallel to TRUE in real studies for faster bootstrappingboot_out <- do_boot(fit, R =45, seed =879, parallel =FALSE, progress =FALSE)# Remove 'progress = FALSE' in practicedm_boot <- delta_med(x ="x", y ="y", m ="m", fit = fit, boot_out = boot_out, progress =FALSE)dm_boot
confint(dm_boot)confint(dm_boot, level =.90)