BetaSubjective function

The BetaSubjective Distribution

The BetaSubjective Distribution

Density, distribution function, quantile function and random generation for the "Beta Subjective" distribution UTF-8

dbetasubj(x, min, mode, mean, max, log = FALSE) pbetasubj(q, min, mode, mean, max, lower.tail = TRUE, log.p = FALSE ) qbetasubj(p, min, mode, mean, max, lower.tail = TRUE, log.p = FALSE ) rbetasubj(n, min, mode, mean, max ) pbetasubj(q, min, mode, mean, max, lower.tail = TRUE, log.p = FALSE) qbetasubj(p, min, mode, mean, max, lower.tail = TRUE, log.p = FALSE) rbetasubj(n, min, mode, mean, max)

Arguments

  • x, q: Vector of quantiles.
  • min: continuous boundary parameter min < max
  • mode: continuous parameter min<mode<maxmin < mode < max and modemeanmode \ne mean.
  • mean: continuous parameter min < mean < max
  • max: continuous boundary parameter
  • log, log.p: Logical; if TRUE, probabilities p are given as log(p).
  • lower.tail: Logical; if TRUE (default), probabilities are P[Xx]P[X \le x] otherwise, P[X>x]P[X > x].
  • p: Vector of probabilities.
  • n: Number of observations.

Details

The Subjective beta distribution specifies a [stats::dbeta()] distribution defined by the minimum, most likely (mode), mean and maximum values and can be used for fitting data for a variable that is bounded to the interval [min,max][min, max]. The shape parameters are calculated from the mode value and mean parameters. It can also be used to represent uncertainty in subjective expert estimates.

Define

mid=(min+max)/2mid=(min+max)/2 mid=(min+max)/2mid=(min+max)/2 a1=2(meanmin)(midmode)((meanmode)(maxmin))a1=2(meanmin)(midmode)/((meanmode)(maxmin)) a_{1}=2*\frac{(mean-min)*(mid-mode)}{((mean-mode)*(max-min))}a_1=2*(mean-min)*(mid-mode)/((mean-mode)*(max-min)) a2=a1(maxmean)(meanmin)a2=a1(maxmean)/(meanmin) a_{2}=a_{1}*\frac{(max-mean)}{(mean-min)}a_2=a_1*(max-mean)/(mean-min)

The subject beta distribution is a [stats::dbeta()] distribution defined on the [min,max][min, max] domain with parameter shape1=a1shape1 = a_{1} and shape2=a2shape2 = a_{2}.

Hence, it has density

f(x)=(xmin)(a11)(maxx)(a21)/(B(a1,a2)(maxmin)(a1+a21))f(x)=(xmin)(a11)(maxx)(a21)/(B(a1,a2)(maxmin)(a1+a21)) f(x)=(x-min)^{(a_{1}-1)}*(max-x)^{(a_{2}-1)} / (B(a_{1},a_{2})*(max-min)^{(a_{1}+a_{2}-1)})f(x)=(x-min)^(a_1-1)*(max-x)^(a_2-1)/(B(a_1,a_2)*(max-min)^(a_1+a_2-1))

The cumulative distribution function is

F(x)=Bz(a1,a2)/B(a1,a2)=Iz(a1,a2)F(x)=Bz(a1,a2)/B(a1,a2)=Iz(a1,a2) F(x)=B_{z}(a_{1},a_{2})/B(a_{1},a_{2})=I_{z}(a_{1},a_{2})F(x)=B_z(a_1,a_2)/B(a_1,a_2)=I_z(a_1,a_2)

where z=(xmin)/(maxmin)z=(x-min)/(max-min). Here B is the beta function and BzB_z is the incomplete beta function.

The parameter restrictions are:

min<=mode<=maxmin<=mode<=max min <= mode <= maxmin <= mode <= max min<=mean<=maxmin<=mean<=max min <= mean <= maxmin <= mean <= max

If mode>meanmode > mean then mode>midmode > mid, else mode<midmode < mid.

Examples

curve(dbetasubj(x, min=0, mode=1, mean=2, max=5), from=-1,to=6) pbetasubj(q = seq(0,5,0.01), 0, 1, 2, 5) qbetasubj(p = seq(0,1,0.01), 0, 1, 2, 5) rbetasubj(n = 1e7, 0, 1, 2, 5)

Author(s)

Yu Chen

  • Maintainer: Regis Pouillot
  • License: GPL (>= 2)
  • Last published: 2024-06-05

Useful links

    Downloads (last 30 days):