The BetaSubjective Distribution
Density, distribution function, quantile function and random generation for the "Beta Subjective" distribution
UTF-8
dbetasubj(x,
min,
mode,
mean,
max,
log = FALSE)
pbetasubj(q,
min,
mode,
mean,
max,
lower.tail = TRUE,
log.p = FALSE
)
qbetasubj(p,
min,
mode,
mean,
max,
lower.tail = TRUE,
log.p = FALSE
)
rbetasubj(n,
min,
mode,
mean,
max
)
pbetasubj(q, min, mode, mean, max, lower.tail = TRUE, log.p = FALSE)
qbetasubj(p, min, mode, mean, max, lower.tail = TRUE, log.p = FALSE)
rbetasubj(n, min, mode, mean, max)
Arguments
x, q
: Vector of quantiles.
min
: continuous boundary parameter min < max
mode
: continuous parameter min<mode<max and mode=mean.
mean
: continuous parameter min < mean < max
max
: continuous boundary parameter
log, log.p
: Logical; if TRUE, probabilities p are given as log(p).
lower.tail
: Logical; if TRUE (default), probabilities are P[X≤x] otherwise, P[X>x].
p
: Vector of probabilities.
n
: Number of observations.
Details
The Subjective beta distribution specifies a [stats::dbeta()] distribution defined by the minimum, most likely (mode), mean and maximum values and can be used for fitting data for a variable that is bounded to the interval [min,max]. The shape parameters are calculated from the mode value and mean parameters. It can also be used to represent uncertainty in subjective expert estimates.
Define
mid=(min+max)/2mid=(min+max)/2
a1=2∗((mean−mode)∗(max−min))(mean−min)∗(mid−mode)a1=2∗(mean−min)∗(mid−mode)/((mean−mode)∗(max−min))
a2=a1∗(mean−min)(max−mean)a2=a1∗(max−mean)/(mean−min)
The subject beta distribution is a [stats::dbeta()] distribution defined on the [min,max] domain with parameter shape1=a1 and shape2=a2.
Hence, it has density
f(x)=(x−min)(a1−1)∗(max−x)(a2−1)/(B(a1,a2)∗(max−min)(a1+a2−1))f(x)=(x−min)(a1−1)∗(max−x)(a2−1)/(B(a1,a2)∗(max−min)(a1+a2−1))
The cumulative distribution function is
F(x)=Bz(a1,a2)/B(a1,a2)=Iz(a1,a2)F(x)=Bz(a1,a2)/B(a1,a2)=Iz(a1,a2)
where z=(x−min)/(max−min). Here B is the beta function and Bz is the incomplete beta function.
The parameter restrictions are:
min<=mode<=maxmin<=mode<=max
min<=mean<=maxmin<=mean<=max
If mode>mean then mode>mid, else mode<mid.
Examples
curve(dbetasubj(x, min=0, mode=1, mean=2, max=5), from=-1,to=6)
pbetasubj(q = seq(0,5,0.01), 0, 1, 2, 5)
qbetasubj(p = seq(0,1,0.01), 0, 1, 2, 5)
rbetasubj(n = 1e7, 0, 1, 2, 5)
Author(s)
Yu Chen