dirichlet function

The Dirichlet Distribution

The Dirichlet Distribution

Density function and random generation from the Dirichlet distribution.

ddirichlet(x, alpha) rdirichlet(n, alpha)

Examples

dat <- c(1, 10, 100, 1000, 1000, 100, 10, 1) (alpha <- matrix(dat, nrow=4, byrow=TRUE)) round(x <- rdirichlet(4, alpha), 2) ddirichlet(x, alpha) ## rdirichlet used with mcstoc mcalpha <- mcdata(dat, type="V", nsv=4, nvariates=2) (x <- mcstoc(rdirichlet, type="V", alpha=mcalpha, nsv=4, nvariates=2)) unclass(x) x <- mcstoc(rdirichlet, type="VU", alpha=mcalpha, nsv=4, nsu=10, nvariates=2) unclass(x)

Arguments

  • x: A vector containing a single deviate or a matrix containing one random deviate per row.

  • alpha: A vector of shape parameters, or a matrix of shape parameters by rows. Recycling (by row) is permitted.

  • n: Number of random vectors to generate. If length(n) >>

    1, the length is taken to be the number required.

Details

The Dirichlet distribution is the multidimensional generalization of the beta distribution. The original code was adapted to provide a kind of "vectorization" used in multivariates mcnode .

Returns

ddirichlet gives the density. rdirichlet returns a matrix with n rows, each containing a single Dirichlet random deviate.

Author(s)

Code is adapted from MCMCpack . It originates from Greg's Miscellaneous Functions (gregmisc).

See Also

Beta

  • Maintainer: Regis Pouillot
  • License: GPL (>= 2)
  • Last published: 2024-06-05

Useful links