spatial: Pure spatial model, exp or cauchy for now.
temporal: Pure temporal model, exp or cauchy for now.
par_s: Parameters for the pure spatial model. Nugget effect supported.
par_t: Parameters for the pure temporal model.
h: Euclidean distance matrix or array.
u: Time lag, same dimension as h.
Returns
Correlations of the same dimension as h and u.
Details
The separable model is the product of a pure temporal model, CT(u), and a pure spatial model, CS(h). It is of the form
C(h,u)=CT(u)[(1−nugget)CS(h)+nuggetδh=0],
where δx=0 is 1 when x=0 and 0 otherwise. Here h∈R2 and u∈R. Now only exponential and Cauchy correlation models are available.
Examples
h <- matrix(c(0,5,5,0), nrow =2)par_s <- list(nugget =0.5, c =0.01, gamma =0.5)u <- matrix(0, nrow =2, ncol =2)par_t <- list(a =1, alpha =0.5)cor_sep( spatial ="exp", temporal ="cauchy", par_s = par_s, par_t = par_t, h = h, u = u
)h <- array(c(0,5,5,0), dim = c(2,2,3))par_s <- list(nugget =0.5, c =0.01, gamma =0.5)u <- array(rep(0:2, each =4), dim = c(2,2,3))par_t <- list(a =1, alpha =0.5)cor_sep( spatial ="exp", temporal ="cauchy", par_s = par_s, par_t = par_t, h = h, u = u
)
References
Gneiting, T. (2002). Nonseparable, Stationary Covariance Functions for Space–Time Data, Journal of the American Statistical Association, 97:458, 590-600.