cor_sep function

Calculate correlation for separable model

Calculate correlation for separable model

cor_sep( spatial = c("exp", "cauchy"), temporal = c("exp", "cauchy"), par_s, par_t, h, u )

Arguments

  • spatial: Pure spatial model, exp or cauchy for now.
  • temporal: Pure temporal model, exp or cauchy for now.
  • par_s: Parameters for the pure spatial model. Nugget effect supported.
  • par_t: Parameters for the pure temporal model.
  • h: Euclidean distance matrix or array.
  • u: Time lag, same dimension as h.

Returns

Correlations of the same dimension as h and u.

Details

The separable model is the product of a pure temporal model, CT(u)C_T(u), and a pure spatial model, CS(h)C_S(\mathbf{h}). It is of the form

C(h,u)=CT(u)[(1nugget)CS(h)+nuggetδh=0], C(\mathbf{h}, u)=C_{T}(u)\left[(1-\text{nugget})C_{S}(\mathbf{h})+\text{nugget}\delta_{\mathbf{h}=0}\right],

where δx=0\delta_{x=0} is 1 when x=0x=0 and 0 otherwise. Here hR2\mathbf{h}\in\mathbb{R}^2 and uRu\in\mathbb{R}. Now only exponential and Cauchy correlation models are available.

Examples

h <- matrix(c(0, 5, 5, 0), nrow = 2) par_s <- list(nugget = 0.5, c = 0.01, gamma = 0.5) u <- matrix(0, nrow = 2, ncol = 2) par_t <- list(a = 1, alpha = 0.5) cor_sep( spatial = "exp", temporal = "cauchy", par_s = par_s, par_t = par_t, h = h, u = u ) h <- array(c(0, 5, 5, 0), dim = c(2, 2, 3)) par_s <- list(nugget = 0.5, c = 0.01, gamma = 0.5) u <- array(rep(0:2, each = 4), dim = c(2, 2, 3)) par_t <- list(a = 1, alpha = 0.5) cor_sep( spatial = "exp", temporal = "cauchy", par_s = par_s, par_t = par_t, h = h, u = u )

References

Gneiting, T. (2002). Nonseparable, Stationary Covariance Functions for Space–Time Data, Journal of the American Statistical Association, 97:458, 590-600.

See Also

Other correlation functions: cor_cauchy(), cor_exp(), cor_fs(), cor_lagr_askey(), cor_lagr_exp(), cor_lagr_tri(), cor_stat(), cor_stat_rs()

  • Maintainer: Tianxia Jia
  • License: MIT + file LICENSE
  • Last published: 2024-06-29

Downloads (last 30 days):