Calculate general stationary correlation.
cor_stat( base = c("sep", "fs"), lagrangian = c("none", "lagr_tri", "lagr_askey"), par_base, par_lagr, lambda, h, h1, h2, u, base_fixed = FALSE )
base
: Base model, sep
or fs
for now. Or correlation matrix/array.lagrangian
: Lagrangian model, none
, lagr_tri
, or lagr_askey
.par_base
: Parameters for the base model (symmetric), used only when base_fixed = FALSE
.par_lagr
: Parameters for the Lagrangian model. Used only when lagrangian
is not none
.lambda
: Weight of the Lagrangian term, .h
: Euclidean distance matrix or array, used only when base_fixed = FALSE
.h1
: Horizontal distance matrix or array, same dimension as h
. Used only when lagrangian
is not none
.h2
: Vertical distance matrix or array, same dimension as h
. Used only when lagrangian
is not none
.u
: Time lag, same dimension as h
.base_fixed
: Logical; if TRUE, base
is the correlation.Correlations for the general stationary model. Same dimension of base
if base_fixed = FALSE
.
The general station model, a convex combination of a base model and a Lagrangian model, has the form
where is the weight of the Lagrangian term.
If base_fixed = TRUE
, the correlation is of the form
where base
is a correlation matrix/array and par_base
and h
are not used.
When lagrangian = "none"
, lambda
must be 0.
par_s <- list(nugget = 0.5, c = 0.01, gamma = 0.5) par_t <- list(a = 1, alpha = 0.5) par_base <- list(par_s = par_s, par_t = par_t) par_lagr <- list(v1 = 5, v2 = 10) h1 <- matrix(c(0, 5, -5, 0), nrow = 2) h2 <- matrix(c(0, 8, -8, 0), nrow = 2) h <- sqrt(h1^2 + h2^2) u <- matrix(0.1, nrow = 2, ncol = 2) cor_stat( base = "sep", lagrangian = "lagr_tri", par_base = par_base, par_lagr = par_lagr, lambda = 0.8, h = h, h1 = h1, h2 = h2, u = u ) h1 <- array(c(0, 5, -5, 0), dim = c(2, 2, 3)) h2 <- array(c(0, 8, -8, 0), dim = c(2, 2, 3)) h <- sqrt(h1^2 + h2^2) u <- array(rep(c(0.1, 0.2, 0.3), each = 4), dim = c(2, 2, 3)) fit_base <- cor_fs( nugget = 0.5, c = 0.01, gamma = 0.5, a = 1, alpha = 0.5, beta = 0.0, h = h, u = u ) par_lagr <- list(v1 = 5, v2 = 10) cor_stat( base = fit_base, lagrangian = "lagr_askey", par_lagr = par_lagr, h1 = h1, h2 = h2, u = u, lambda = 0.8, base_fixed = TRUE )
Other correlation functions: cor_cauchy()
, cor_exp()
, cor_fs()
, cor_lagr_askey()
, cor_lagr_exp()
, cor_lagr_tri()
, cor_sep()
, cor_stat_rs()
Useful links