base_ls: List of base model, sep or fs for now. Or list of correlation matrices/arrays.
lagrangian_ls: List of Lagrangian model, lagr_tri or lagr_askey
for now.
par_base_ls: List of parameters for the base model, used only when base_fixed = FALSE.
par_lagr_ls: List of parameters for the Lagrangian model. Used only when lagrangian_ls is not none.
lambda_ls: List of weight of the Lagrangian term, λ∈[0,1].
h_ls: List of Euclidean distance matrix or array, used only when base_fixed = FALSE.
h1_ls: List of horizontal distance matrix or array, same dimension as h_ls. Used only when lagrangian_ls is not none.
h2_ls: List of vertical distance matrix or array, same dimension as h_ls. Used only when lagrangian_ls is not none.
u_ls: List of time lag, same dimension as h_ls.
base_fixed: Logical; if TRUE, base_ls is the list of correlation.
Returns
Correlations for the general stationary model. Same dimension of base_ls if base_fixed = TRUE.
Details
It gives a list of general stationary correlation for n_regime
regimes. See cor_stat for the model details. Model parameters are lists of length 1 or n_regime. When length is 1, same values are used for all regimes. If base_fixed = TRUE, the base is a list of correlation and par_base_ls and h_ls are not used.
Examples
# Fit general stationary model with sep base.par_s <- list(nugget =0.5, c =0.01, gamma =0.5)par_t <- list(a =1, alpha =0.5)par_base <- list(par_s = par_s, par_t = par_t)h1 <- array(c(0,5,-5,0), dim = c(2,2,3))h2 <- array(c(0,8,-8,0), dim = c(2,2,3))h <- sqrt(h1^2+ h2^2)u <- array(rep(c(1,2,3), each =4), dim = c(2,2,3))cor_stat_rs( n_regime =2, base_ls = list("sep"), lagrangian_ls = list("none","lagr_tri"), par_base_ls = list(par_base), par_lagr_ls = list(NULL, list(v1 =10, v2 =20)), lambda_ls = list(0,0.2), h_ls = list(h), h1_ls = list(NULL, h1), h2_ls = list(NULL, h2), u_ls = list(u, u +1))# Fit general stationary model given fs as the base model.h1 <- array(c(0,5,-5,0), dim = c(2,2,3))h2 <- array(c(0,8,-8,0), dim = c(2,2,3))h <- sqrt(h1^2+ h2^2)u <- array(rep(c(0.1,0.2,0.3), each =4), dim = c(2,2,3))fit_base <- cor_fs( nugget =0.5, c =0.01, gamma =0.5, a =1, alpha =0.5, beta =0.0, h = h, u = u
)par_lagr <- list(v1 =5, v2 =10)cor_stat_rs( n_regime =2, par_lagr_ls = list(par_lagr), h1_ls = list(h1), h2_ls = list(h2), u_ls = list(u, u +1), lambda_ls = list(0,0.8), base_ls = list(fit_base), lagrangian = list("lagr_tri","lagr_askey"), base_fixed =TRUE)