cor_stat_rs function

Calculate general stationary correlation.

Calculate general stationary correlation.

cor_stat_rs( n_regime, base_ls, lagrangian_ls, par_base_ls, par_lagr_ls, lambda_ls, h_ls, h1_ls, h2_ls, u_ls, base_fixed = FALSE )

Arguments

  • n_regime: Integer, number of regimes.

  • base_ls: List of base model, sep or fs for now. Or list of correlation matrices/arrays.

  • lagrangian_ls: List of Lagrangian model, lagr_tri or lagr_askey

    for now.

  • par_base_ls: List of parameters for the base model, used only when base_fixed = FALSE.

  • par_lagr_ls: List of parameters for the Lagrangian model. Used only when lagrangian_ls is not none.

  • lambda_ls: List of weight of the Lagrangian term, λ[0,1]\lambda\in[0, 1].

  • h_ls: List of Euclidean distance matrix or array, used only when base_fixed = FALSE.

  • h1_ls: List of horizontal distance matrix or array, same dimension as h_ls. Used only when lagrangian_ls is not none.

  • h2_ls: List of vertical distance matrix or array, same dimension as h_ls. Used only when lagrangian_ls is not none.

  • u_ls: List of time lag, same dimension as h_ls.

  • base_fixed: Logical; if TRUE, base_ls is the list of correlation.

Returns

Correlations for the general stationary model. Same dimension of base_ls if base_fixed = TRUE.

Details

It gives a list of general stationary correlation for n_regime

regimes. See cor_stat for the model details. Model parameters are lists of length 1 or n_regime. When length is 1, same values are used for all regimes. If base_fixed = TRUE, the base is a list of correlation and par_base_ls and h_ls are not used.

Examples

# Fit general stationary model with sep base. par_s <- list(nugget = 0.5, c = 0.01, gamma = 0.5) par_t <- list(a = 1, alpha = 0.5) par_base <- list(par_s = par_s, par_t = par_t) h1 <- array(c(0, 5, -5, 0), dim = c(2, 2, 3)) h2 <- array(c(0, 8, -8, 0), dim = c(2, 2, 3)) h <- sqrt(h1^2 + h2^2) u <- array(rep(c(1, 2, 3), each = 4), dim = c(2, 2, 3)) cor_stat_rs( n_regime = 2, base_ls = list("sep"), lagrangian_ls = list("none", "lagr_tri"), par_base_ls = list(par_base), par_lagr_ls = list(NULL, list(v1 = 10, v2 = 20)), lambda_ls = list(0, 0.2), h_ls = list(h), h1_ls = list(NULL, h1), h2_ls = list(NULL, h2), u_ls = list(u, u + 1) ) # Fit general stationary model given fs as the base model. h1 <- array(c(0, 5, -5, 0), dim = c(2, 2, 3)) h2 <- array(c(0, 8, -8, 0), dim = c(2, 2, 3)) h <- sqrt(h1^2 + h2^2) u <- array(rep(c(0.1, 0.2, 0.3), each = 4), dim = c(2, 2, 3)) fit_base <- cor_fs( nugget = 0.5, c = 0.01, gamma = 0.5, a = 1, alpha = 0.5, beta = 0.0, h = h, u = u ) par_lagr <- list(v1 = 5, v2 = 10) cor_stat_rs( n_regime = 2, par_lagr_ls = list(par_lagr), h1_ls = list(h1), h2_ls = list(h2), u_ls = list(u, u + 1), lambda_ls = list(0, 0.8), base_ls = list(fit_base), lagrangian = list("lagr_tri", "lagr_askey"), base_fixed = TRUE )

See Also

Other correlation functions: cor_cauchy(), cor_exp(), cor_fs(), cor_lagr_askey(), cor_lagr_exp(), cor_lagr_tri(), cor_sep(), cor_stat()