dot-cor_fs function

Calculate correlation for fully symmetric model

Calculate correlation for fully symmetric model

.cor_fs(nugget, c, gamma = 1/2, a, alpha, beta = 0, h, u)

Arguments

  • nugget: The nugget effect [0,1]\in[0, 1].
  • c: Scale parameter of cor_exp, c>0c>0.
  • gamma: Smooth parameter of cor_exp, γ(0,1/2]\gamma\in(0, 1/2].
  • a: Scale parameter of cor_cauchy, a>0a>0.
  • alpha: Smooth parameter of cor_cauchy, α(0,1]\alpha\in(0, 1].
  • beta: Interaction parameter, β[0,1]\beta\in[0, 1].
  • h: Euclidean distance matrix or array.
  • u: Time lag, same dimension as h.

Returns

Correlations of the same dimension as h and u.

Details

The fully symmetric correlation function with interaction parameter β\beta has the form

C(h,u)=1(au2α+1)((1nugget)exp(ch2γ(au2α+1)βγ)+nuggetδh=0), C(\mathbf{h}, u)=\dfrac{1}{(a|u|^{2\alpha} + 1)}\left((1-\text{nugget})\exp\left(\dfrac{-c\|\mathbf{h}\|^{2\gamma}}{(a|u|^{2\alpha}+1)^{\beta\gamma}}\right)+\text{nugget}\cdot \delta_{\mathbf{h}=\boldsymbol 0}\right),

where \|\cdot\| is the Euclidean distance, and δx=0\delta_{x=0} is 1 when x=0x=0 and 0 otherwise. Here hR2\mathbf{h}\in\mathbb{R}^2 and uRu\in\mathbb{R}. By default beta = 0 and it reduces to the separable model.

References

Gneiting, T. (2002). Nonseparable, Stationary Covariance Functions for Space–Time Data, Journal of the American Statistical Association, 97:458, 590-600.