Calculate Lagrangian correlation of the triangular form
Calculate Lagrangian correlation of the triangular form
.cor_lagr_tri(v1, v2, k =2, h1, h2, u)
Arguments
v1: Prevailing wind, u-component.
v2: Prevailing wind, v-component.
k: Scale parameter of ∥v∥, k>0. Default is 2.
h1: Horizontal distance matrix or array.
h2: Vertical distance matrix or array, same dimension as h1.
u: Time lag, same dimension as h1.
Returns
Correlations of the same dimension as h1.
Details
The Lagrangian correlation function of the triangular form with parameters v=(v1,v2)⊤∈R2 has the form
C(h,u)=(1−k∥v∥1∥v∥h⊤v−u∥v∥)+,
where ∥⋅∥ is the Euclidean distance, c("x+=max(x,0),\n", "\\mathbf{h} = (\\mathrm{h}_1, \\mathrm{h}_2)^\\top\\in\\mathbb{R}^2"), and k>0 is the scale parameter controlling the magnitude of asymmetry in correlation.