dot-cor_sep function

Calculate correlation for separable model

Calculate correlation for separable model

.cor_sep(spatial, temporal, par_s, par_t)

Arguments

  • spatial: Pure spatial model, exp or cauchy for now.
  • temporal: Pure temporal model, exp or cauchy for now.
  • par_s: Parameters for the pure spatial model. Nugget effect supported.
  • par_t: Parameters for the pure temporal model.

Returns

Correlations for separable model.

Details

The separable model is the product of a pure temporal model, CT(u)C_T(u), and a pure spatial model, CS(h)C_S(\mathbf{h}). It is of the form

C(h,u)=CT(u)[(1nugget)CS(h)+nuggetδh=0], C(\mathbf{h}, u)=C_{T}(u)\left[(1-\text{nugget})C_{S}(\mathbf{h})+\text{nugget}\delta_{\mathbf{h}=0}\right],

where δx=0\delta_{x=0} is 1 when x=0x=0 and 0 otherwise. Here hR2\mathbf{h}\in\mathbb{R}^2 and uRu\in\mathbb{R}. Now only exponential and Cauchy correlation models are available.

References

Gneiting, T. (2002). Nonseparable, Stationary Covariance Functions for Space–Time Data, Journal of the American Statistical Association, 97:458, 590-600.