es_from_ancova_means_sd function

Convert means and standard deviations of two independent groups obtained from an ANCOVA model into several effect size measures

Convert means and standard deviations of two independent groups obtained from an ANCOVA model into several effect size measures

es_from_ancova_means_sd( n_exp, n_nexp, ancova_mean_exp, ancova_mean_nexp, ancova_mean_sd_exp, ancova_mean_sd_nexp, cov_outcome_r, n_cov_ancova, smd_to_cor = "viechtbauer", reverse_ancova_means )

Arguments

  • n_exp: number of participants in the experimental/exposed group.
  • n_nexp: number of participants in the non-experimental/non-exposed group.
  • ancova_mean_exp: adjusted mean of participants in the experimental/exposed group.
  • ancova_mean_nexp: adjusted mean of participants in the non-experimental/non-exposed group.
  • ancova_mean_sd_exp: adjusted standard deviation of participants in the experimental/exposed group.
  • ancova_mean_sd_nexp: adjusted standard deviation of participants in the non-experimental/non-exposed group.
  • cov_outcome_r: correlation between the outcome and covariate(s) (multiple correlation when multiple covariates are included in the ANCOVA model).
  • n_cov_ancova: number of covariates in the ANCOVA model.
  • smd_to_cor: formula used to convert the adjusted cohen_d value into a coefficient correlation (see details).
  • reverse_ancova_means: a logical value indicating whether the direction of the generated effect sizes should be flipped.

Returns

This function estimates and converts between several effect size measures.

natural effect size measureMD + D + G
converted effect size measureOR + R + Z
required input dataSee 'Section 19. Adjusted: Means and dispersion'
https://metaconvert.org/input.html

Details

This function first computes an "adjusted" mean difference (MD), Cohen's d (D) and Hedges' g (G) from the adjusted means and standard deviations. Odds ratio (OR) and correlation coefficients (R/Z) are then converted from the Cohen's d.

This function start by estimating the non-adjusted standard deviation of the two groups (formula 12.24 in Cooper);

mean_sd_exp=ancova_mean_sd_exp1cov_outcome_r2 mean\_sd\_exp = \frac{ancova\_mean\_sd\_exp}{\sqrt{1 - cov\_outcome\_r^2}} mean_sd_nexp=ancova_mean_sd_nexp1cov_outcome_r2 mean\_sd\_nexp = \frac{ancova\_mean\_sd\_nexp}{\sqrt{1 - cov\_outcome\_r^2}}

To obtain the mean difference , the following formulas are used (authors calculations):

md=ancova_mean_expancova_mean_nexp md = ancova\_mean\_exp - ancova\_mean\_nexp md_se=mean_sd_exp2n_exp+mean_sd_nexp2n_nexp md\_se = \sqrt{\frac{mean\_sd\_exp^2}{n\_exp} + \frac{mean\_sd\_nexp^2}{n\_nexp}} md_ci_lo=mdmd_seqt(.975,n_exp+n_nexp2n_cov_ancova) md\_ci\_lo = md - md\_se * qt(.975, n\_exp+n\_nexp-2-n\_cov\_ancova) md_ci_up=md+md_seqt(.975,n_exp+n_nexp2n_cov_ancova) md\_ci\_up = md + md\_se * qt(.975, n\_exp+n\_nexp-2-n\_cov\_ancova)

To obtain the Cohen's d , the following formulas are used (table 12.3 in Cooper):

mean_sd_pooled=(n_exp1)ancova_mean_exp2+(n_nexp1)ancova_mean_nexp2n_exp+n_nexp2 mean\_sd\_pooled = \sqrt{\frac{(n\_exp - 1) * ancova\_mean\_exp^2 + (n\_nexp - 1) * ancova\_mean\_nexp^2}{n\_exp+n\_nexp-2}} cohen_d=ancova_mean_expancova_mean_nexpmean_sd_pooled cohen\_d = \frac{ancova\_mean\_exp - ancova\_mean\_nexp}{mean\_sd\_pooled} cohen_d_se=(n_exp+n_nexp)(1cov_outcome_r2)n_expn_nexp+cohen_d22(n_exp+n_nexp) cohen\_d\_se = \frac{(n\_exp+n\_nexp)*(1-cov\_outcome\_r^2)}{n\_exp*n\_nexp} + \frac{cohen\_d^2}{2(n\_exp+n\_nexp)} cohen_d_ci_lo=cohen_dcohen_d_seqt(.975,n_exp+n_nexp2n_cov_ancova) cohen\_d\_ci\_lo = cohen\_d - cohen\_d\_se * qt(.975, n\_exp + n\_nexp - 2 - n\_cov\_ancova) cohen_d_ci_up=cohen_d+cohen_d_seqt(.975,n_exp+n_nexp2n_cov_ancova) cohen\_d\_ci\_up = cohen\_d + cohen\_d\_se * qt(.975, n\_exp + n\_nexp - 2 - n\_cov\_ancova)

To estimate other effect size measures , Calculations of the es_from_cohen_d_adj() are applied.

Examples

es_from_ancova_means_sd( n_exp = 55, n_nexp = 55, ancova_mean_exp = 2.3, ancova_mean_sd_exp = 1.2, ancova_mean_nexp = 1.9, ancova_mean_sd_nexp = 0.9, cov_outcome_r = 0.2, n_cov_ancova = 3 )

References

Cooper, H., Hedges, L.V., & Valentine, J.C. (Eds.). (2019). The handbook of research synthesis and meta-analysis. Russell Sage Foundation.

  • Maintainer: Corentin J. Gosling
  • License: GPL (>= 3)
  • Last published: 2025-04-11

Useful links