es_from_beta_std function

Convert a standardized regression coefficient and the standard deviation of the dependent variable into several effect size measures

Convert a standardized regression coefficient and the standard deviation of the dependent variable into several effect size measures

es_from_beta_std( beta_std, sd_dv, n_exp, n_nexp, smd_to_cor = "viechtbauer", reverse_beta_std )

Arguments

  • beta_std: a standardized regression coefficient value (binary predictor, no other covariables in the model)
  • sd_dv: standard deviation of the dependent variable
  • n_exp: number of participants in the experimental/exposed group.
  • n_nexp: number of participants in the non-experimental/non-exposed group.
  • smd_to_cor: formula used to convert the cohen_d value into a coefficient correlation (see details).
  • reverse_beta_std: a logical value indicating whether the direction of the generated effect sizes should be flipped.

Returns

This function estimates and converts between several effect size measures.

natural effect size measureD + G
converted effect size measureOR + R + Z
required input dataSee 'Section 13. (Un-)Standardized regression coefficient'
https://metaconvert.org/input.html

Details

This function converts a standardized linear regression coefficient (coming from a model with only one binary predictor), into an unstandardized linear regression coefficient.

sd_dummy=nexp(nexp2/(nexp+nnexp))(nexp+nnexp1) sd\_dummy = \sqrt{\frac{n_exp - (n_exp^2 / (n_exp + n_nexp))}{(n_exp + n_nexp - 1)}} unstd_beta=beta_stdsd_dvsd_dummy unstd\_beta = beta\_std * \frac{sd\_dv}{sd\_dummy}

Calculations of the es_from_beta_unstd functions are then used.

Examples

es_from_beta_std(beta_std = 2.1, sd_dv = 0.98, n_exp = 20, n_nexp = 22)

References

Lipsey, M. W., & Wilson, D. B. (2001). Practical meta-analysis. Sage Publications, Inc.

  • Maintainer: Corentin J. Gosling
  • License: GPL (>= 3)
  • Last published: 2024-11-17

Useful links