es_from_mean_change_pval function

Convert mean changes and standard deviations of two independent groups into standard effect size measures

Convert mean changes and standard deviations of two independent groups into standard effect size measures

es_from_mean_change_pval( mean_change_exp, mean_change_pval_exp, mean_change_nexp, mean_change_pval_nexp, r_pre_post_exp, r_pre_post_nexp, n_exp, n_nexp, smd_to_cor = "viechtbauer", reverse_mean_change )

Arguments

  • mean_change_exp: mean change of participants in the experimental/exposed group.
  • mean_change_pval_exp: p-value of the mean change for participants in the experimental/exposed group.
  • mean_change_nexp: mean change of participants in the non-experimental/non-exposed group.
  • mean_change_pval_nexp: p-value of the mean change for participants in the non-experimental/non-exposed group.
  • r_pre_post_exp: pre-post correlation in the experimental/exposed group
  • r_pre_post_nexp: pre-post correlation in the non-experimental/non-exposed group
  • n_exp: number of participants in the experimental/exposed group.
  • n_nexp: number of participants in the non-experimental/non-exposed group.
  • smd_to_cor: formula used to convert the cohen_d value into a coefficient correlation (see details).
  • reverse_mean_change: a logical value indicating whether the direction of generated effect sizes should be flipped.

Returns

This function estimates and converts between several effect size measures.

natural effect size measureMD + D + G
converted effect size measureOR + R + Z
required input dataSee 'Section 14. Paired: mean change, and dispersion'
https://metaconvert.org/input.html

Details

This function converts the mean change and associated p-values of two independent groups into a Cohen's d. The Cohen's d is then converted to other effect size measures.

To start, this function estimates the mean change standard errors from the p-values:

t_exp<qt(p=mean_change_pval_exp/2,df=n_exp1,lower.tail=FALSE) t\_exp <- qt(p = mean\_change\_pval\_exp / 2, df = n\_exp - 1, lower.tail = FALSE) t_nexp<qt(p=mean_change_pval_nexp/2,df=n_nexp1,lower.tail=FALSE) t\_nexp <- qt(p = mean\_change\_pval\_nexp / 2, df = n\_nexp - 1, lower.tail = FALSE) mean_change_se_exp<mean_change_expt_exp mean\_change\_se\_exp <- |\frac{mean\_change\_exp}{t\_exp}| mean_change_se_nexp<mean_change_nexpt_nexp mean\_change\_se\_nexp <- |\frac{mean\_change\_nexp}{t\_nexp}|

Then, this function simply internally calls the es_from_means_se_pre_post function but setting:

mean_pre_exp=mean_change_exp mean\_pre\_exp = mean\_change\_exp mean_pre_se_exp=mean_change_se_exp mean\_pre\_se\_exp = mean\_change\_se\_exp mean_exp=0 mean\_exp = 0 mean_se_exp=0 mean\_se\_exp = 0 mean_pre_nexp=mean_change_nexp mean\_pre\_nexp = mean\_change\_nexp mean_pre_se_nexp=mean_change_se_nexp mean\_pre\_se\_nexp = mean\_change\_se\_nexp mean_nexp=0 mean\_nexp = 0 mean_se_nexp=0 mean\_se\_nexp = 0

To know more about other calculations, see es_from_means_sd_pre_post function.

Examples

es_from_mean_change_pval( n_exp = 36, n_nexp = 35, mean_change_exp = 8.4, mean_change_pval_exp = 0.13, mean_change_nexp = 2.43, mean_change_pval_nexp = 0.61, r_pre_post_exp = 0.8, r_pre_post_nexp = 0.8 )

References

Bonett, S. B. (2008). Estimating effect sizes from pretest-posttest-control group designs. Organizational Research Methods, 11(2), 364–386. https://doi.org/10.1177/1094428106291059

Cooper, H., Hedges, L.V., & Valentine, J.C. (Eds.). (2019). The handbook of research synthesis and meta-analysis. Russell Sage Foundation.

  • Maintainer: Corentin J. Gosling
  • License: GPL (>= 3)
  • Last published: 2024-11-17

Useful links