es_variab_from_means_sd function

Convert means and/or standard deviations of two independent groups into two effect measures (VR/CVR)

Convert means and/or standard deviations of two independent groups into two effect measures (VR/CVR)

es_variab_from_means_sd( mean_exp, mean_nexp, mean_sd_exp, mean_sd_nexp, n_exp, n_nexp, reverse_means_variability )

Arguments

  • mean_exp: mean of participants in the experimental/exposed group.
  • mean_nexp: mean of participants in the non-experimental/non-exposed group.
  • mean_sd_exp: standard deviation of participants in the experimental/exposed group.
  • mean_sd_nexp: standard deviation of participants in the non-experimental/non-exposed group.
  • n_exp: number of participants in the experimental/exposed group.
  • n_nexp: number of participants in the non-experimental/non-exposed group.
  • reverse_means_variability: a logical value indicating whether the direction of the generated effect sizes should be flipped.

Returns

This function estimates VR and CVR

natural effect size measureVR + CVR
converted effect size measureNo conversion performed
required input dataSee 'Section 23. User's input (crude)'
https://metaconvert.org/html/input.html

Details

This function converts the means and standard deviations of two independent groups into a log variability ratio (VR) and a log coefficient of variation ratio (CVR).

The formulas used to obtain the log VR are (formulas 5 and 15, Senior et al. 2020):

logvr=log(mean_sd_expmean_sd_nexp)+12(n_exp1)12(n_nexp1) logvr = log(\frac{mean\_sd\_exp}{mean\_sd\_nexp}) + \frac{1}{2 * (n\_exp - 1)} - \frac{1}{2 * (n\_nexp - 1)} logvr_se=12(n_nexp(n_nexp1)2+n_exp(n_exp1)2) logvr\_se = \sqrt{\frac{1}{2} * (\frac{n\_nexp}{(n\_nexp - 1)^2} + \frac{n\_exp}{(n\_exp - 1)^2})} logvr_ci_lo=logvrqnorm(.975)logvr_se logvr\_ci\_lo = logvr - qnorm(.975) * logvr\_se logvr_ci_up=logvr+qnorm(.975)logvr_se logvr\_ci\_up = logvr + qnorm(.975) * logvr\_se

The formulas used to obtain the log CVR are (formulas 6 and 16, Senior et al. 2020):

cvt=mean_sd_exp/mean_exp cvt = mean\_sd\_exp / mean\_exp cvc=mean_sd_nexp/mean_nexp cvc = mean\_sd\_nexp / mean\_nexp logcvr=log(cvtcvc)+12(1n_exp11n_nexp1)+12(mean_sd_nexp2n_nexpmean_nexp2mean_sd_exp2n_expmean_exp2) logcvr = log(\frac{cvt}{cvc}) + \frac{1}{2} * (\frac{1}{n\_exp - 1} - \frac{1}{n\_nexp - 1}) + \frac{1}{2} * (\frac{mean\_sd\_nexp^2}{n\_nexp * mean\_nexp^2} - \frac{mean\_sd\_exp^2}{n\_exp * mean\_exp^2}) vt_exp=mean_sd_exp2n_expmean_exp2+mean_sd_exp42n_exp2mean_exp4+n_exp(n_exp1)2 vt\_exp = \frac{mean\_sd\_exp^2}{n\_exp * mean\_exp^2} + \frac{mean\_sd\_exp^4}{2 * n\_exp^2 * mean\_exp^4} + \frac{n\_exp}{(n\_exp - 1)^2} vt_nexp=mean_sd_nexp2n_nexpmean_nexp2+mean_sd_nexp42n_nexp2mean_nexp4+n_nexp(n_nexp1)2 vt\_nexp = \frac{mean\_sd\_nexp^2}{n\_nexp * mean\_nexp^2} + \frac{mean\_sd\_nexp^4}{2 * n\_nexp^2 * mean\_nexp^4} + \frac{n\_nexp}{(n\_nexp - 1)^2} logcvr_se=vt_exp+vt_nexp logcvr\_se = \sqrt{vt\_exp + vt\_nexp} logcvr_ci_lo=logcvrqnorm(.975)logcvr_se logcvr\_ci\_lo = logcvr - qnorm(.975) * logcvr\_se logcvr_ci_up=logcvr+qnorm(.975)logcvr_se logcvr\_ci\_up = logcvr + qnorm(.975) * logcvr\_se

Examples

es_variab_from_means_sd( n_exp = 55, n_nexp = 55, mean_exp = 2.3, mean_sd_exp = 1.2, mean_nexp = 1.9, mean_sd_nexp = 0.9 )

References

Senior, A. M., Viechtbauer, W., & Nakagawa, S. (2020). Revisiting and expanding the meta-analysis of variation: The log coefficient of variation ratio. Research Synthesis Methods, 11(4), 553-567. https://doi.org/10.1002/jrsm.1423

  • Maintainer: Corentin J. Gosling
  • License: GPL (>= 3)
  • Last published: 2025-04-11

Useful links