utils_na_zero function

Utilities for handling with NA and zero values

Utilities for handling with NA and zero values

NAs and zeros can increase the noise in multi-environment trial analysis. This collection of functions will make it easier to deal with them.

  • fill_na(): Fills NA in selected columns using the next or previous entry.

  • has_na(), has_zero(): Check for NAs and 0s in the data and return a logical value.

  • prop_na() returns the proportion of NAs in each column of a data frame.

  • random_na(): Generate random NA values in a two-way table based on a desired proportion.

  • remove_cols_na(), remove_rows_na(): Remove columns and rows that contains at least one NA value.

  • remove_cols_all_na(), remove_rows_all_na(): Remove columns and rows where all values are NAs.

  • remove_cols_zero(), remove_rows_zero(): Remove columns and rows that contains at least one 0 value, respectively.

  • select_cols_na(), select_cols_zero(): Select columns with NAs

    and 0s, respectively.

  • select_rows_na(), select_rows_zero(): Select rows with NAs

    and 0s, respectively.

  • replace_na(), replace_zero(): Replace NAs and 0s, respectively, with a replacement value.

fill_na(.data, ..., direction = "down") has_na(.data) prop_na(.data, ...) remove_rows_na(.data, verbose = TRUE) remove_rows_all_na(.data, verbose = TRUE) remove_cols_na(.data, verbose = TRUE) remove_cols_all_na(.data, verbose = TRUE) select_cols_na(.data, verbose = TRUE) select_rows_na(.data, verbose = TRUE) replace_na(.data, ..., replacement = 0) random_na(.data, prop) has_zero(.data) remove_rows_zero(.data, verbose = TRUE) remove_cols_zero(.data, verbose = TRUE) select_cols_zero(.data, verbose = TRUE) select_rows_zero(.data, verbose = TRUE) replace_zero(.data, ..., replacement = NA)

Arguments

  • .data: A data frame.
  • ...: Variables to fill NAs in fill_na(), replace NAs in replace_na() or zeros in replace_zero(). If ... is null then all variables in .data will be evaluated. It must be a single variable name or a comma-separated list of unquoted variables names. Select helpers are also allowed.
  • direction: Direction in which to fill missing values. Currently either "down" (the default), "up", "downup" (i.e. first down and then up) or "updown" (first up and then down).
  • verbose: Logical argument. If TRUE (default) shows in console the rows or columns deleted.
  • replacement: The value used for replacement. Defaults to 0. Other possible values are Use "colmean", "colmin", and "colmax" to replace missing values with column mean, minimum and maximum values, respectively.
  • prop: The proportion (percentage) of NA values to generate in .data.

Returns

A data frame with rows or columns with NA values deleted.

Examples

library(metan) data_naz <- iris %>% group_by(Species) %>% doo(~head(., n = 3)) %>% as_character(Species) data_naz data_naz[c(2:3, 6, 8), c(1:2, 4, 5)] <- NA data_naz[c(2, 7, 9), c(2, 3, 4)] <- 0 has_na(data_naz) has_zero(data_naz) # Fill NA values of column GEN fill_na(data_naz, Species) # Remove columns remove_cols_na(data_naz) remove_cols_zero(data_naz) remove_rows_na(data_naz) remove_rows_zero(data_naz) # Select columns select_cols_na(data_naz) select_cols_zero(data_naz) select_rows_na(data_naz) select_rows_zero(data_naz) # Replace values replace_na(data_naz) replace_zero(data_naz)

Author(s)

Tiago Olivoto tiagoolivoto@gmail.com