## S3 method for class 'orbbound'print( x, common = x$x$common, random = x$x$random, header =TRUE, backtransf = x$backtransf, digits = gs("digits"), digits.stat = gs("digits.stat"), digits.pval = max(gs("digits.pval"),2), digits.tau2 = gs("digits.tau2"), scientific.pval = gs("scientific.pval"), big.mark = gs("big.mark"), warn.deprecated = gs("warn.deprecated"),...)
Arguments
x: An object of class orbbound.
common: A logical indicating whether sensitivity analysis for common effect model should be printed.
random: A logical indicating whether sensitivity analysis for random effects model should be printed.
header: A logical indicating whether information on meta-analysis should be printed at top of printout.
backtransf: A logical indicating whether printed results should be back transformed. If backtransf=TRUE, results for sm="OR" are printed as odds ratios rather than log odds ratios and results for sm="ZCOR" are printed as correlations rather than Fisher's z transformed correlations, for example.
digits: Minimal number of significant digits, see print.default.
digits.stat: Minimal number of significant digits for z- or t-value, see print.default.
digits.pval: Minimal number of significant digits for p-value of overall treatment effect, see print.default.
digits.tau2: Minimal number of significant digits for between-study variance, see print.default.
scientific.pval: A logical specifying whether p-values should be printed in scientific notation, e.g., 1.2345e-01 instead of 0.12345.
big.mark: A character used as thousands separator.
warn.deprecated: A logical indicating whether warnings should be printed if deprecated arguments are used.
...: Additional arguments to catch deprecated arguments.
Details
For summary measures 'RR', 'OR', and 'HR' column labeled maxbias contains the relative bias, e.g. a value of 1.10 means a maximum overestimation by 10 percent. If logscale=TRUE for these summary measures, maximum bias is instead printed as absolute bias.
Examples
data(Fleiss1993bin, package ="meta")m1 <- metabin(d.asp, n.asp, d.plac, n.plac, data = Fleiss1993bin, sm ="OR")orb1 <- orbbound(m1, k.suspect =1:5)print(orb1, digits =2)# Print log odds ratios instead of odds ratios#print(orb1, digits =2, backtransf =FALSE)# Assuming that studies are missing on the left side#orb1.missleft <- orbbound(m1, k.suspect =1:5, left =TRUE)orb1.missleft
m2 <- metabin(d.asp, n.asp, d.plac, n.plac, data = Fleiss1993bin, sm ="OR", method ="Inverse")orb2 <- orbbound(m2, k.suspect =1:5)print(orb2, digits =2)