MLP function

Mean Lack of Precision (MLP)

Mean Lack of Precision (MLP)

It estimates the MLP, the unsystematic error component to the Mean Squared Error (MSE), for a continuous predicted-observed dataset following Correndo et al. (2021).

MLP(data = NULL, obs, pred, tidy = FALSE, na.rm = TRUE)

Arguments

  • data: (Optional) argument to call an existing data frame containing the data.
  • obs: Vector with observed values (numeric).
  • pred: Vector with predicted values (numeric).
  • tidy: Logical operator (TRUE/FALSE) to decide the type of return. TRUE returns a data.frame, FALSE returns a list; Default : FALSE.
  • na.rm: Logic argument to remove rows with missing values (NA). Default is na.rm = TRUE.

Returns

an object of class numeric within a list (if tidy = FALSE) or within a data frame (if tidy = TRUE).

Details

The MLP represents the unsystematic (random) component of the MSE. It is obtained via a symmetric decomposition of the MSE (invariant to predicted-observed orientation) using a symmetric regression line. The MLP is equal to the sum of unsystematic differences divided by the sample size (n). The greater the value the greater the random noise of the predictions. For the formula and more details, see online-documentation

Examples

set.seed(1) X <- rnorm(n = 100, mean = 0, sd = 10) Y <- X + rnorm(n=100, mean = 0, sd = 3) MLP(obs = X, pred = Y)

References

Correndo et al. (2021). Revisiting linear regression to test agreement in continuous predicted-observed datasets. Agric. Syst. 192, 103194. tools:::Rd_expr_doi("10.1016/j.agsy.2021.103194")

  • Maintainer: Adrian A. Correndo
  • License: MIT + file LICENSE
  • Last published: 2024-06-30