It estimates the PLP, the contribution of the unsystematic error to the Mean Squared Error (MSE) for a continuous predicted-observed dataset following Correndo et al. (2021).
data: (Optional) argument to call an existing data frame containing the data.
obs: Vector with observed values (numeric).
pred: Vector with predicted values (numeric).
tidy: Logical operator (TRUE/FALSE) to decide the type of return. TRUE returns a data.frame, FALSE returns a list; Default : FALSE.
na.rm: Logic argument to remove rows with missing values (NA). Default is na.rm = TRUE.
Returns
an object of class numeric within a list (if tidy = FALSE) or within a data frame (if tidy = TRUE).
Details
The PLP (%, 0-100) represents the contribution of the Mean Lack of Precision (MLP), the unsystematic (random) component of the MSE. It is obtained via a symmetric decomposition of the MSE (invariant to predicted-observed orientation). The greater the value the greater the contribution of unsystematic error to the MSE. For the formula and more details, see online-documentation
Examples
set.seed(1)X <- rnorm(n =100, mean =0, sd =10)Y <- X + rnorm(n=100, mean =0, sd =3)PLP(obs = X, pred = Y)
References
Correndo et al. (2021). Revisiting linear regression to test agreement in continuous predicted-observed datasets. Agric. Syst. 192, 103194. tools:::Rd_expr_doi("10.1016/j.agsy.2021.103194")