RMAE function

Relative Mean Absolute Error (RMAE)

Relative Mean Absolute Error (RMAE)

It estimates the RMAE for a continuous predicted-observed dataset.

RMAE(data = NULL, obs, pred, tidy = FALSE, na.rm = TRUE)

Arguments

  • data: (Optional) argument to call an existing data frame containing the data.
  • obs: Vector with observed values (numeric).
  • pred: Vector with predicted values (numeric).
  • tidy: Logical operator (TRUE/FALSE) to decide the type of return. TRUE returns a data.frame, FALSE returns a list; Default : FALSE.
  • na.rm: Logic argument to remove rows with missing values (NA). Default is na.rm = TRUE.

Returns

an object of class numeric within a list (if tidy = FALSE) or within a data frame (if tidy = TRUE).

Details

The RMAE normalizes the Mean Absolute Error (MAE) by the mean of observations. The closer to zero the lower the prediction error. For the formula and more details, see online-documentation

Examples

set.seed(1) X <- rnorm(n = 100, mean = 0, sd = 10) Y <- X + rnorm(n=100, mean = 0, sd = 3) RMAE(obs = X, pred = Y)
  • Maintainer: Adrian A. Correndo
  • License: MIT + file LICENSE
  • Last published: 2024-06-30