preval estimates the prevalence of positive cases for a nominal/categorical predicted-observed dataset.
preval_t estimates the prevalence threshold for a binary predicted-observed dataset.
preval( data =NULL, obs, pred, atom =FALSE, pos_level =2, tidy =FALSE, na.rm =TRUE)preval_t( data =NULL, obs, pred, atom =FALSE, pos_level =2, tidy =FALSE, na.rm =TRUE)
Arguments
data: (Optional) argument to call an existing data frame containing the data.
obs: Vector with observed values (character | factor).
pred: Vector with predicted values (character | factor).
atom: Logical operator (TRUE/FALSE) to decide if the estimate is made for each class (atom = TRUE) or at a global level (atom = FALSE); Default : FALSE.
pos_level: Integer, for binary cases, indicating the order (1|2) of the level corresponding to the positive. Generally, the positive level is the second (2) since following an alpha-numeric order, the most common pairs are (Negative | Positive), (0 | 1), (FALSE | TRUE). Default : 2.
tidy: Logical operator (TRUE/FALSE) to decide the type of return. TRUE returns a data.frame, FALSE returns a list; Default : FALSE.
na.rm: Logic argument to remove rows with missing values (NA). Default is na.rm = TRUE.
Returns
an object of class numeric within a list (if tidy = FALSE) or within a data frame (if tidy = TRUE).
Details
The prevalence measures the overall proportion of actual positives with respect to the total number of observations. Currently, it is defined for binary cases only.
The general formula is:
preval=positive+negativepositive
The prevalence threshold represents an point on the ROC curve (function of sensitivity (recall) and specificity) below which the precision (or PPV) dramatically drops.
prevalt=TPR−FPRTPR∗FPR−FPR
It is bounded between 0 and 1. The closer to 1 the better. Values towards zero indicate low performance. For the formula and more details, see online-documentation
Examples
set.seed(123)# Two-classbinomial_case <- data.frame(labels = sample(c("True","False"),100, replace =TRUE),predictions = sample(c("True","False"),100, replace =TRUE))# Multi-classmultinomial_case <- data.frame(labels = sample(c("Red","Blue","Green"),100, replace =TRUE),predictions = sample(c("Red","Blue","Green"),100, replace =TRUE))# Get prevalence estimate for two-class casepreval(data = binomial_case, obs = labels, pred = predictions, tidy =TRUE)# Get prevalence estimate for each class for the multi-class casepreval(data = multinomial_case, obs = labels, pred = predictions, atom =TRUE)
References
Freeman, E.A., Moisen, G.G. (2008). A comparison of the performance of threshold criteria for binary classification in terms of predicted prevalence and kappa. . Ecol. Modell. 217(1-2): 45-58. tools:::Rd_expr_doi("10.1016/j.ecolmodel.2008.05.015")
Balayla, J. (2020). Prevalence threshold and the geometry of screening curves. _Plos one, 15(10):e0240215, _ tools:::Rd_expr_doi("10.1371/journal.pone.0240215")