Fits a semiparametric Cox regression model for a bivariate outcome. This function computes the regression coefficients, baseline hazards, and sandwich estimates of the standard deviation of the regression coefficients. If desired, estimates of the survival function F and marginal hazard rates Lambda11 can be computed using the mHR2.LF function.
mHR2(Y1, Y2, Delta1, Delta2, X)
Arguments
Y1, Y2: Vectors of event times (continuous).
Delta1, Delta2: Vectors of censoring indicators (1=event, 0=censored).
X: Matrix of covariates (continuous or binary).
Returns
A list containing the following elements:
Y1, Y2:: Original vectors of event times
Delta1, Delta2:: Original vectors of censoring indicators
X:: Original covariate matrix
n10, n01:: Total number of events for the first/second outcome
Prentice, R., Zhao, S. "The statistical analysis of multivariate failure time data: A marginal modeling approach", CRC Press (2019). Prentice, R., Zhao, S. "Regression models and multivariate life tables", Journal of the American Statistical Association (2021) 116(535): 1330-1345. https://doi.org/10.1080/01621459.2020.1713792