translogCostEst function

Estimate a translog Cost Function

Estimate a translog Cost Function

Estimate a translog cost function.

NOTE: this function is still under development and incomplete!

translogCostEst( cName, yName, pNames, data, fNames = NULL, shifterNames = NULL, dataLogged = FALSE, homPrice = TRUE, ... )

Arguments

  • cName: a string containing the name of the variable for total cost.

  • yName: a string containing the name of the variable for the total output quantity.

  • pNames: a vector of strings containing the names of the input prices.

  • data: data frame containing the data (possibly a panel data frame created with pdata.frame).

  • fNames: a vector of strings containing the names of fixed inputs.

  • shifterNames: a vector of strings containing the names of the independent variables that should be included as shifters only (not in quadratic or interaction terms).

  • dataLogged: logical. Are the values in data already logged?

  • homPrice: logical. Should homogeneity of degree one in prices be imposed?

  • ...: further arguments are passed to lm

    or plm.

Returns

a list of class translogCostEst containing following objects: - est: the object returned by lm

or `plm`.
  • nExog: length of argument xNames.

  • nShifter: length of argument shifterNames.

  • residuals: residuals.

  • fitted: fitted values.

  • coef: vector of all coefficients.

  • coefCov: covariance matrix of all coefficients.

  • r2: R2R^2 value.

  • r2bar: adjusted R2R^2 value.

  • nObs: number of observations.

  • model.matrix: the model matrix.

  • call: the matched call.

  • cName: argument cName.

  • yName: argument yName.

  • pNames: argument pNames.

  • fNames: argument fNames.

  • shifterNames: argument shifterNames.

  • dataLogged: argument dataLogged.

  • homPrice: argument homPrice.

See Also

translogEst

and quadFuncEst.

Author(s)

Arne Henningsen

Examples

data( germanFarms ) # output quantity: germanFarms$qOutput <- germanFarms$vOutput / germanFarms$pOutput # value of labor input germanFarms$vLabor <- germanFarms$pLabor + germanFarms$qLabor # total variable cost germanFarms$cost <- germanFarms$vLabor + germanFarms$vVarInput # a time trend to account for technical progress: germanFarms$time <- c(1:20) # estimate a translog cost function estResult <- translogCostEst( cName = "cost", yName = "qOutput", pNames = c( "pLabor", "pVarInput" ), fNames = "land", shifterNames = "time", data = germanFarms, homPrice = FALSE ) summary( estResult$est )