Suggestion of conditional imputation models to use accordingly to the incomplete dataset
Suggestion of conditional imputation models to use accordingly to the incomplete dataset
Provides conditionnal imputation models to use for each column of the incomplete dataset according to the number of clusters, the number of individuals per cluster and the class of the variables.
ind.clust: A scalar indexes the variable corresponding to the cluster indicator.
I.small: A scalar that is used as threshold to consider the number of observed clusters (fully observed or partially observed) as small. Default is I.small=7.
ni.small: A scalar that is used as threshold to consider the number individuals per clusters (with observed values) as small. Default is ni.small=100.
prop.small: A scalar that is used as threshold to consider the number of small clusters as small. Default is prop.small=0.4.
Details
Provides conditionnal imputation models to use for each column of the incomplete dataset according to the number of clusters, the number of individuals per cluster and the class of the variable (Audigier, V. et al 2017). Returned methods can be: 2l.stage.bin (binary), 2l.stage.norm (continuous), 2l.stage.pois (integer), 2l.glm.bin (binary), 2l.glm.norm (continuous), 2l.glm.pois (integer), 2l.jomo (continuous or binary). For a given variable, the method retained is chosen according to the following decision tree:
----------------------------------
-----------------------------------
Few observed
clusters
----------------------------------
-----------------------------------
Few observed values per cluster
Many observed values per cluster
------------------
------------------------------------------------
-----------------------------------
continuous
2l.glm.norm
2l.stage.norm
binary
2l.glm.bin
2l.stage.bin
integer
2l.glm.pois
2l.stage.pois
------------------
------------------------------------------------
-----------------------------------
----------------------------------
-----------------------------------
Many observed
clusters
----------------------------------
-----------------------------------
Few observed values per cluster
Many observed values per cluster
------------------
------------------------------------------------
-----------------------------------
continuous
2l.glm.norm
2l.stage.norm
binary
2l.jomo
2l.jomo
integer
2l.glm.pois
2l.stage.pois
------------------
------------------------------------------------
-----------------------------------
For instance, with few observed clusters (i.e. less than I.small), and many observed values per cluster (i.e. less than prop.small clusters with less than ni.small observed values), imputation of a continuous variable according to the method 2l.stage.norm will be suggested.
Returns
A vector of strings with length ncol(data).
References
Audigier, V., White, I. , Jolani ,S. Debray, T., Quartagno, M., Carpenter, J., van Buuren, S. and Resche-Rigon, M. Multiple imputation for multilevel data with continuous and binary variables (2018). Statistical Science. tools:::Rd_expr_doi("10.1214/18-STS646") .
Jolani, S., Debray, T. P. A., Koffijberg, H., van Buuren, S., and Moons, K. G. M. (2015). Imputation of systematically missing predictors in an individual participant data meta-analysis: a generalized approach using MICE. Statistics in Medicine, 34(11):1841-1863). tools:::Rd_expr_doi("10.1002/sim.6451")
Quartagno, M. and Carpenter, J. R. (2016). Multiple imputation for IPD meta-analysis: allowing for heterogeneity and studies with missing covariates. Statistics in Medicine, 35(17):2938-2954. tools:::Rd_expr_doi("10.1002/sim.6837")
Resche-Rigon, M. and White, I. R. (2018). Multiple imputation by chained equations for systematically and sporadically missing multilevel data. Statistical Methods in Medical Research, 27(6):1634-1649. tools:::Rd_expr_doi("10.1177/0962280216666564")