For a given set of points in X, computes the orthonormal Gegenbauer polynomials basis of L2 [a,b] for a given degree and α parameter. The Gegenbauer polynomials are a special case of more general Jacobi polynomials. In turn, you may get Legendre polynomials from Gegenbauer by setting α = 0, or Chebychev's polynomials by setting α = 1/2 or -1/2.
gb(degree, alpha, a =0, b =1, jmax =NULL, X =NULL)
Arguments
degree: polynomial degree.
alpha: Gegenbauer polynomials parameter.
a: lower shift value (default - 0).
b: upper shift value (default - 1).
jmax: number of high-frequency lags.
X: optional evaluation grid vector.
Returns
Psi weight matrix with Gegenbauer functions upto degree.
Examples
degree <-3alpha <-1jmax <-66gb(degree = degree, alpha = alpha, a =0, b =1, jmax = jmax)