amweights function

Weights for aggregates based MIDAS regressions

Weights for aggregates based MIDAS regressions

Produces weights for aggregates based MIDAS regression

amweights(p, d, m, weight = nealmon, type = c("A", "B", "C"))

Arguments

  • p: parameters for weight functions, see details.
  • d: number of high frequency lags
  • m: the frequency
  • weight: the weight function
  • type: type of structure, a string, one of A, B or C.

Returns

a vector of weights

Details

Suppose a weight function w(β,θ)w(\beta,\theta) satisfies the following equation:

w(β,θ)=βg(θ) w(\beta,\theta)=\beta g(\theta)

The following combinations are defined, corresponding to structure types A, B and C respectively:

(w(β1,θ1),...,w(βk,θk)) (w(\beta_1,\theta_1),...,w(\beta_k,\theta_k)) (w(β1,θ),...,w(βk,θ)) (w(\beta_1,\theta),...,w(\beta_k,\theta)) β(w(1,θ),...,w(1,θ)), \beta(w(1,\theta),...,w(1,\theta)),

where kk is the number of low frequency lags, i.e. d/md/m. If the latter value is not whole number, the error is produced.

The starting values pp should be supplied then as follows:

(β1,θ1,...,βk,θk) (\beta_1,\theta_1,...,\beta_k,\theta_k) (β1,...,βk,θ) (\beta_1,...,\beta_k,\theta) (β,θ) (\beta,\theta)

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

  • Maintainer: Vaidotas Zemlys-Balevičius
  • License: GPL-2 | MIT + file LICENCE
  • Last published: 2021-02-23