midas_auto_sim function

Simulate simple autoregressive MIDAS model

Simulate simple autoregressive MIDAS model

Given the predictor variable, the weights and autoregressive coefficients, simulate MIDAS regression response variable.

midas_auto_sim( n, alpha, x, theta, rand_gen = rnorm, innov = rand_gen(n, ...), n_start = NA, ... )

Arguments

  • n: sample size.
  • alpha: autoregressive coefficients.
  • x: a high frequency predictor variable.
  • theta: a vector with MIDAS weights for predictor variable.
  • rand_gen: a function to generate the innovations, default is the normal distribution.
  • innov: an optional time series of innovations.
  • n_start: number of observations to omit for the burn.in.
  • ...: additional arguments to function rand_gen.

Returns

a ts object

Examples

theta_h0 <- function(p, dk) { i <- (1:dk-1)/100 pol <- p[3]*i + p[4]*i^2 (p[1] + p[2]*i)*exp(pol) } ##Generate coefficients theta0 <- theta_h0(c(-0.1,10,-10,-10),4*12) ##Generate the predictor variable xx <- ts(arima.sim(model = list(ar = 0.6), 1000 * 12), frequency = 12) y <- midas_auto_sim(500, 0.5, xx, theta0, n_start = 200) x <- window(xx, start=start(y)) midas_r(y ~ mls(y, 1, 1) + fmls(x, 4*12-1, 12, theta_h0), start = list(x = c(-0.1, 10, -10, -10)))

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

  • Maintainer: Vaidotas Zemlys-Balevičius
  • License: GPL-2 | MIT + file LICENCE
  • Last published: 2021-02-23