midas_lstr_sim function

Simulate LSTR MIDAS regression model

Simulate LSTR MIDAS regression model

midas_lstr_sim( n, m, theta, intercept, plstr, ar.x, ar.y, rand.gen = rnorm, n.start = NA, ... )

Arguments

  • n: number of observations to simulate.
  • m: integer, frequency ratio
  • theta: vector, restriction coefficients for high frequency variable
  • intercept: vector of length 1, intercept for the model.
  • plstr: vector of length 4, slope for the LSTR term and LSTR parameters
  • ar.x: vector, AR parameters for simulating high frequency variable
  • ar.y: vector, AR parameters for AR part of the model
  • rand.gen: function, a function for generating the regression innovations, default is rnorm
  • n.start: integer, length of a 'burn-in' period. If NA, the default, a reasonable value is computed.
  • ...: additional parameters to rand.gen

Returns

a list

Examples

nnbeta <- function(p, k) nbeta(c(1,p),k) dgp <- midas_lstr_sim(250, m = 12, theta = nnbeta(c(2, 4), 24), intercept = c(1), plstr = c(1.5, 1, log(1), 1), ar.x = 0.9, ar.y = 0.5, n.start = 100) z <- cbind(1, mls(dgp$y, 1:2, 1)) colnames(z) <- c("Intercept", "y1", "y2") X <- mls(dgp$x, 0:23, 12) lstr_mod <- midas_lstr_plain(dgp$y, X, z, nnbeta, start_lstr = c(1.5, 1, 1, 1), start_x = c(2, 4), start_z=c(1, 0.5, 0)) coef(lstr_mod)
  • Maintainer: Vaidotas Zemlys-Balevičius
  • License: GPL-2 | MIT + file LICENCE
  • Last published: 2021-02-23