Simulate LSTR MIDAS regression model
midas_lstr_sim( n, m, theta, intercept, plstr, ar.x, ar.y, rand.gen = rnorm, n.start = NA, ... )
n
: number of observations to simulate.m
: integer, frequency ratiotheta
: vector, restriction coefficients for high frequency variableintercept
: vector of length 1, intercept for the model.plstr
: vector of length 4, slope for the LSTR term and LSTR parametersar.x
: vector, AR parameters for simulating high frequency variablear.y
: vector, AR parameters for AR part of the modelrand.gen
: function, a function for generating the regression innovations, default is rnorm
n.start
: integer, length of a 'burn-in' period. If NA, the default, a reasonable value is computed....
: additional parameters to rand.gena list
nnbeta <- function(p, k) nbeta(c(1,p),k) dgp <- midas_lstr_sim(250, m = 12, theta = nnbeta(c(2, 4), 24), intercept = c(1), plstr = c(1.5, 1, log(1), 1), ar.x = 0.9, ar.y = 0.5, n.start = 100) z <- cbind(1, mls(dgp$y, 1:2, 1)) colnames(z) <- c("Intercept", "y1", "y2") X <- mls(dgp$x, 0:23, 12) lstr_mod <- midas_lstr_plain(dgp$y, X, z, nnbeta, start_lstr = c(1.5, 1, 1, 1), start_x = c(2, 4), start_z=c(1, 0.5, 0)) coef(lstr_mod)