midas_mmm_sim function

Simulate MMM MIDAS regression model

Simulate MMM MIDAS regression model

midas_mmm_sim( n, m, theta, intercept, pmmm, ar.x, ar.y, rand.gen = rnorm, n.start = NA, ... )

Arguments

  • n: number of observations to simulate.
  • m: integer, frequency ratio
  • theta: vector, restriction coefficients for high frequency variable
  • intercept: vector of length 1, intercept for the model.
  • pmmm: vector of length 2, slope for the MMM term and MMM parameter
  • ar.x: vector, AR parameters for simulating high frequency variable
  • ar.y: vector, AR parameters for AR part of the model
  • rand.gen: function, a function for generating the regression innovations, default is rnorm
  • n.start: integer, length of a 'burn-in' period. If NA, the default, a reasonable value is computed.
  • ...: additional parameters to rand.gen

Returns

a list

Examples

nnbeta <- function(p, k) nbeta(c(1,p),k) dgp <- midas_mmm_sim(250, m = 12, theta = nnbeta(c(2, 4), 24), intercept = c(1), pmmm = c(1.5, 1), ar.x = 0.9, ar.y = 0.5, n.start = 100) z <- cbind(1, mls(dgp$y, 1:2, 1)) colnames(z) <- c("Intercept", "y1", "y2") X <- mls(dgp$x, 0:23, 12) mmm_mod <- midas_mmm_plain(dgp$y, X, z, nnbeta, start_mmm = c(1.5, 1), start_x = c(2, 4), start_z=c(1, 0.5, 0)) coef(mmm_mod)
  • Maintainer: Vaidotas Zemlys-Balevičius
  • License: GPL-2 | MIT + file LICENCE
  • Last published: 2021-02-23