midas_nlpr function

Non-linear parametric MIDAS regression

Non-linear parametric MIDAS regression

Estimate restricted MIDAS regression using non-linear least squares.

midas_nlpr(formula, data, start, Ofunction = "optim", ...)

Arguments

  • formula: formula for restricted MIDAS regression or midas_r object. Formula must include fmls function
  • data: a named list containing data with mixed frequencies
  • start: the starting values for optimisation. Must be a list with named elements.
  • Ofunction: the list with information which R function to use for optimisation. The list must have element named Ofunction which contains character string of chosen R function. Other elements of the list are the arguments passed to this function. The default optimisation function is optim with arguments method="Nelder-Mead" and control=list(maxit=5000). Other supported functions are nls, optimx.
  • ...: additional arguments supplied to optimisation function

Returns

a midas_r object which is the list with the following elements:

  • coefficients: the estimates of parameters of restrictions

  • midas_coefficients: the estimates of MIDAS coefficients of MIDAS regression

  • model: model data

  • unrestricted: unrestricted regression estimated using midas_u

  • term_info: the named list. Each element is a list with the information about the term, such as its frequency, function for weights, gradient function of weights, etc.

  • fn0: optimisation function for non-linear least squares problem solved in restricted MIDAS regression

  • rhs: the function which evaluates the right-hand side of the MIDAS regression

  • gen_midas_coef: the function which generates the MIDAS coefficients of MIDAS regression

  • opt: the output of optimisation procedure

  • argmap_opt: the list containing the name of optimisation function together with arguments for optimisation function

  • start_opt: the starting values used in optimisation

  • start_list: the starting values as a list

  • call: the call to the function

  • terms: terms object

  • gradient: gradient of NLS objective function

  • hessian: hessian of NLS objective function

  • gradD: gradient function of MIDAS weight functions

  • Zenv: the environment in which data is placed

  • nobs: the number of effective observations

  • convergence: the convergence message

  • fitted.values: the fitted values of MIDAS regression

  • residuals: the residuals of MIDAS regression

Details

Given MIDAS regression:

yt=j=1pαjytj+i=0kj=0liβj(i)xtmij(i)+ut, y_t = \sum_{j=1}^p\alpha_jy_{t-j} +\sum_{i=0}^{k}\sum_{j=0}^{l_i}\beta_{j}^{(i)}x_{tm_i-j}^{(i)} + u_t,

estimate the parameters of the restriction

βj(i)=g(i)(j,λ). \beta_j^{(i)}=g^{(i)}(j,\lambda).

Such model is a generalisation of so called ADL-MIDAS regression. It is not required that all the coefficients should be restricted, i.e the function g(i)g^{(i)}

might be an identity function. Model with no restrictions is called U-MIDAS model. The regressors xτ(i)x_\tau^{(i)} must be of higher (or of the same) frequency as the dependent variable yty_t.

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

  • Maintainer: Vaidotas Zemlys-Balevičius
  • License: GPL-2 | MIT + file LICENCE
  • Last published: 2021-02-23