Simulate PL MIDAS regression model
midas_pl_sim( n, m, theta, gfun, ar.x, ar.y, rand.gen = rnorm, n.start = NA, ... )
n
: number of observations to simulate.m
: integer, frequency ratiotheta
: vector, restriction coefficients for high frequency variablegfun
: function, a function which takes a single indexar.x
: vector, AR parameters for simulating high frequency variablear.y
: vector, AR parameters for AR part of the modelrand.gen
: function, a function for generating the regression innovations, default is rnorm
n.start
: integer, length of a 'burn-in' period. If NA, the default, a reasonable value is computed....
: additional parameters to rand.gena list
nnbeta <- function(p, k) nbeta(c(1,p),k) dgp <- midas_pl_sim(250, m = 12, theta = nnbeta(c(2, 4), 24), gfun = function(x) 0.25*x^3, ar.x = 0.9, ar.y = 0.5, n.start = 100)