where xτ(i), i=0,...k are regressors of higher (or similar) frequency than yt. Given certain assumptions the coefficients can be estimated using usual OLS and they have the familiar properties associated with simple linear regression.
Examples
##The parameter functiontheta_h0 <-function(p, dk,...){ i <-(1:dk-1)/100 pol <- p[3]*i + p[4]*i^2(p[1]+ p[2]*i)*exp(pol)}##Generate coefficientstheta0 <- theta_h0(c(-0.1,10,-10,-10),4*12)##Plot the coefficients##Do not run#plot(theta0)##' ##Generate the predictor variablexx <- ts(arima.sim(model = list(ar =0.6),600*12), frequency =12)##Simulate the response variabley <- midas_sim(500, xx, theta0)x <- window(xx, start=start(y))##Create low frequency data.frameldt <- data.frame(y=y,trend=1:length(y))##Create high frequency data.framehdt <- data.frame(x=window(x, start=start(y)))##Fit unrestricted modelmu <- midas_u(y~fmls(x,2,12)-1, list(ldt, hdt))##Include intercept and trend in regressionmu_it <- midas_u(y~fmls(x,2,12)+trend, list(ldt, hdt))##Pass data as partialy named listmu_it <- midas_u(y~fmls(x,2,12)+trend, list(ldt, x=hdt$x))
References
Kvedaras V., Zemlys, V. Testing the functional constraints on parameters in regressions with variables of different frequency Economics Letters 116 (2012) 250-254