midas_u function

Estimate unrestricted MIDAS regression

Estimate unrestricted MIDAS regression

Estimate unrestricted MIDAS regression using OLS. This function is a wrapper for lm.

midas_u(formula, data, ...)

Arguments

  • formula: MIDAS regression model formula
  • data: a named list containing data with mixed frequencies
  • ...: further arguments, which could be passed to lm function.

Returns

lm object.

Details

MIDAS regression has the following form:

yt=j=1pαjytj+i=0kj=0liβj(i)xtmij(i)+ut, y_t = \sum_{j=1}^p\alpha_jy_{t-j} +\sum_{i=0}^{k}\sum_{j=0}^{l_i}\beta_{j}^{(i)}x_{tm_i-j}^{(i)} + u_t,

where xτ(i)x_\tau^{(i)}, i=0,...ki=0,...k are regressors of higher (or similar) frequency than yty_t. Given certain assumptions the coefficients can be estimated using usual OLS and they have the familiar properties associated with simple linear regression.

Examples

##The parameter function theta_h0 <- function(p, dk, ...) { i <- (1:dk-1)/100 pol <- p[3]*i + p[4]*i^2 (p[1] + p[2]*i)*exp(pol) } ##Generate coefficients theta0 <- theta_h0(c(-0.1,10,-10,-10),4*12) ##Plot the coefficients ##Do not run #plot(theta0) ##' ##Generate the predictor variable xx <- ts(arima.sim(model = list(ar = 0.6), 600 * 12), frequency = 12) ##Simulate the response variable y <- midas_sim(500, xx, theta0) x <- window(xx, start=start(y)) ##Create low frequency data.frame ldt <- data.frame(y=y,trend=1:length(y)) ##Create high frequency data.frame hdt <- data.frame(x=window(x, start=start(y))) ##Fit unrestricted model mu <- midas_u(y~fmls(x,2,12)-1, list(ldt, hdt)) ##Include intercept and trend in regression mu_it <- midas_u(y~fmls(x,2,12)+trend, list(ldt, hdt)) ##Pass data as partialy named list mu_it <- midas_u(y~fmls(x,2,12)+trend, list(ldt, x=hdt$x))

References

Kvedaras V., Zemlys, V. Testing the functional constraints on parameters in regressions with variables of different frequency Economics Letters 116 (2012) 250-254

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

  • Maintainer: Vaidotas Zemlys-Balevičius
  • License: GPL-2 | MIT + file LICENCE
  • Last published: 2021-02-23