nealmon function

Normalized Exponential Almon lag MIDAS coefficients

Normalized Exponential Almon lag MIDAS coefficients

Calculate normalized exponential Almon lag coefficients given the parameters and required number of coefficients.

nealmon(p, d, m)

Arguments

  • p: parameters for Almon lag
  • d: number of the coefficients
  • m: the frequency, currently ignored.

Returns

vector of coefficients

Details

Given unrestricted MIDAS regression

yt=h=0dθhxtmh+ztβ+ut y_t=\sum_{h=0}^d\theta_{h}x_{tm-h}+\mathbf{z_t}\beta+u_t

normalized exponential Almon lag restricts the coefficients thetahtheta_h in the following way:

θh=δexp(λ1(h+1)++λr(h+1)r)s=0dexp(λ1(s+1)++λr(h+1)r) \theta_{h}=\delta\frac{\exp(\lambda_1(h+1)+\dots+\lambda_r(h+1)^r)}{\sum_{s=0}^d\exp(\lambda_1(s+1)+\dots+\lambda_r(h+1)^r)}

The parameter δ\delta should be the first element in vector p. The degree of the polynomial is then decided by the number of the remaining parameters.

Examples

##Load data data("USunempr") data("USrealgdp") y <- diff(log(USrealgdp)) x <- window(diff(USunempr),start=1949) t <- 1:length(y) midas_r(y~t+fmls(x,11,12,nealmon),start=list(x=c(0,0,0)))

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

  • Maintainer: Vaidotas Zemlys-Balevičius
  • License: GPL-2 | MIT + file LICENCE
  • Last published: 2021-02-23