weights_table function

Create a weight function selection table for MIDAS regression model

Create a weight function selection table for MIDAS regression model

Creates a weight function selection table for MIDAS regression model with given information criteria and weight functions.

weights_table( formula, data, start = NULL, IC = c("AIC", "BIC"), test = c("hAh_test"), Ofunction = "optim", weight_gradients = NULL, ... )

Arguments

  • formula: the formula for MIDAS regression, the lag selection is performed for the last MIDAS lag term in the formula
  • data: a list containing data with mixed frequencies
  • start: the starting values for optimisation
  • IC: the information criteria which to compute
  • test: the names of statistical tests to perform on restricted model, p-values are reported in the columns of model selection table
  • Ofunction: see midasr
  • weight_gradients: see midas_r
  • ...: additional parameters to optimisation function, see midas_r

Returns

a midas_r_ic_table object which is the list with the following elements:

  • table: the table where each row contains calculated information criteria for both restricted and unrestricted MIDAS regression model with given lag structure

  • candlist: the list containing fitted models

  • IC: the argument IC

Details

This function estimates models sequentially increasing the midas lag from kmin to kmax of the last term of the given formula

Examples

data("USunempr") data("USrealgdp") y <- diff(log(USrealgdp)) x <- window(diff(USunempr),start=1949) trend <- 1:length(y) mwr <- weights_table(y~trend+fmls(x,12,12,nealmon), start=list(x=list(nealmon=rep(0,3), nbeta=c(1,1,1,0)))) mwr

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

  • Maintainer: Vaidotas Zemlys-Balevičius
  • License: GPL-2 | MIT + file LICENCE
  • Last published: 2021-02-23