mig_loglik_grad function

Gradient of the MIG log likelihood with respect to data

Gradient of the MIG log likelihood with respect to data

This function returns the gradient vector of the log likelihood with respect to the argument x.

mig_loglik_grad(x, xi, Omega, beta)

Arguments

  • x: n by d matrix of quantiles
  • xi: d vector of location parameters ξ\boldsymbol{\xi}, giving the expected value
  • Omega: d by d positive definite scale matrix Ω\boldsymbol{\Omega}
  • beta: d vector β\boldsymbol{\beta} defining the half-space through βξ>0\boldsymbol{\beta}^{\top}\boldsymbol{\xi}>0

Returns

an n by d matrix of first derivatives for the gradient, observation by observation, or a d vector if x is a vector.

  • Maintainer: Leo Belzile
  • License: MIT + file LICENSE
  • Last published: 2025-04-08

Useful links