mipfp3.2.1 package

Multidimensional Iterative Proportional Fitting and Alternative Models

Array2Vector

Transforming an array to a vector

expand

Expand a Table in a Data Frame

error.margins

Extracts the deviation between every target and generated margin

Estimate

Update an N-way table given target margins

coef.mipfp

Extract the coefficients of the estimates from an object of class mipf...

CompareMaxDev

Comparing deviations of mipfp objects

ComputeA

Computes the marginal matrix A and margins vector m of an estimation p...

confint.mipfp

Computing confidence intervals for the mipfp estimates

Corr2Odds

Converting correlation to odds ratio

Corr2PairProbs

Converting correlation to pairwise probability

flat

Flatten a table, array or matrix

GetConfInt

Computing confidence intervals for the estimated counts and probabilit...

GetLinInd

Extracting the linearly independant columns from a matrix

gof.estimates

Wald, Log-likelihood ratio and Person Chi-square statistics for mipfp ...

Ipfp

Multidimensional Iterative Proportional Fitting

IpfpCov

Covariance matrix of the estimators produced by Ipfp (deprecated)

mipfp-package

Multidimensional Iterative Proportional Fitting and Alternative Models

ObtainModelEstimates

Estimating a contingency table using model-based approaches

ObtainMultBinaryDist

Generating a multivariate Bernoulli joint-distribution

Odds2Corr

Converting odds ratio to correlation

Odds2PairProbs

Converting odds ratio to pairwise probability

RMultBinary

Simulating a multivariate Bernoulli distribution

summary.mipfp

Summarizing objects of class mipfp

vcov.mipfp

Calculate variance-covariance matrix for mipfp objects

Vector2Array

Transforming a vector to an array

An implementation of the iterative proportional fitting (IPFP), maximum likelihood, minimum chi-square and weighted least squares procedures for updating a N-dimensional array with respect to given target marginal distributions (which, in turn can be multidimensional). The package also provides an application of the IPFP to simulate multivariate Bernoulli distributions.