Used in main function miss.saem. Calculate the variance of estimated parameters for logistic regression model with missing data, using Monte Carlo version of Louis formula.
beta: Estimated parameter of logistic regression model.
mu: Estimated parameter μ.
Sigma: Estimated parameter Σ.
Y: Response vector N∗1
X.obs: Design matrix with missingness N∗p
pos_var: Index of selected covariates.
rindic: Missing pattern of X.obs. If a component in X.obs is missing, the corresponding position in rindic is 1; else 0.
whichcolXmissing: The column index in covariate containing at least one missing observation.
mc.size: Monte Carlo sampling size.
Returns
Variance of estimated β.
Examples
# Generate datasetN <-50# number of subjectsp <-3# number of explanatory variablesmu.star <- rep(0,p)# mean of the explanatory variablesSigma.star <- diag(rep(1,p))# covariancebeta.star <- c(1,1,0)# coefficientsbeta0.star <-0# interceptbeta.true = c(beta0.star,beta.star)X.complete <- matrix(rnorm(N*p), nrow=N)%*%chol(Sigma.star)+ matrix(rep(mu.star,N), nrow=N, byrow =TRUE)p1 <-1/(1+exp(-X.complete%*%beta.star-beta0.star))y <- as.numeric(runif(N)<p1)# Generate missingnessp.miss <-0.10patterns <- runif(N*p)<p.miss #missing completely at randomX.obs <- X.complete
X.obs[patterns]<-NA# Louis formula to obtain variance of estimatesV_obs = louis_lr_saem(beta.true,mu.star,Sigma.star,y,X.obs)