Deconvolves Thermogravimetric Data
This function deconvolves thermogravimetric data using a Fraser-Suzuki mixture model
deconvolve(process_object, lower_temp = 120, upper_temp = 700, seed = 1, n_peaks = NULL, start_vec = NULL, lower_vec = NULL, upper_vec = NULL)
process_object
: process object obtained from process functionlower_temp
: lower temperature bound to crop dataset, default to 120upper_temp
: upper temperature bound to crop dataset, default to 700seed
: random seed for nloptr optimisern_peaks
: number of curves optional specificationstart_vec
: vector of starting values for nls function. Only specify this vector if you have selected the number of curves in the n_peaks parameter.lower_vec
: vector of lower bound values for nls. Only specify this vector if you have selected the number of curves in the n_peaks parameter.upper_vec
: vector of upper bound values for nls. Only specify this vector if you have selected the number of curves in the n_peaks parameter.decon list containing amended dataframe, temperature bounds, minpack.lm model fit, the number of curves fit, and estimated component weights
data(juncus) tmp <- process(juncus, init_mass = 18.96, temp = 'temp_C', mass_loss = 'mass_loss') output <- deconvolve(tmp) my_starting_vec <- c(height_1 = 0.003, skew_1 = -0.15, position_1 = 250, width_1 = 50, height_2 = 0.006, skew_2 = -0.15, position_2 = 320, width_2 = 30, height_3 = 0.001, skew_3 = -0.15, position_3 = 390, width_3 = 200) output <- deconvolve(tmp, n_peaks = 3, start_vec = my_starting_vec)