Bayes.fit-class function

S4 class for the Bayesian estimation results

class

S4 class for the Bayesian estimation results

Slots

  • sigma2: vector of posterior samples for σ2\sigma^2
  • mu: matrix of posterior samples for μ\mu
  • omega: matrix of posterior samples for ω\omega
  • alpha: matrix of posterior samples for α\alpha
  • beta: matrix of posterior samples for β\beta
  • random: 1, 2 or c(1,2)
  • burnIn: proposal for the burn-in phase
  • thinning: proposal for the thinning rate
  • model: 'OU' or 'CIR'
  • prior: list of prior values, input variable or calculated by the first 10% of series
  • times: vector of observation times, storage of input variable
  • X: matrix of observations, storage of input variable
  • ind.4.prior: indices of series used for the prior parameter calculation, if prior knowledge is availabe it is set to M+1