X: matrix of the M trajectories (each row is a trajectory with N=T/Δ column).
model: name of the SDE: 'OU' (Ornstein-Uhlenbeck) or 'CIR' (Cox-Ingersoll-Ross).
prior: list of prior parameters: mean and variance of the Gaussian prior on the mean mu, shape and scale of the inverse Gamma prior for the variances omega, shape and scale of the inverse Gamma prior for sigma
start: list of starting values: mu, sigma
random: random effects in the drift: 1 if one additive random effect, 2 if one multiplicative random effect or c(1,2) if 2 random effects.
nMCMC: number of iterations of the MCMC algorithm
propSd: proposal standard deviation of ϕ is ∣μ∣∗propSd/log(N) at the beginning, is adjusted when acceptance rate is under 30% or over 60%
Returns
alpha: posterior samples (Markov chain) of α
beta: posterior samples (Markov chain) of β
mu: posterior samples (Markov chain) of μ
omega: posterior samples (Markov chain) of Ω
sigma2: posterior samples (Markov chain) of σ2
References
Hermann, S., Ickstadt, K. and C. Mueller (2016). Bayesian Prediction of Crack Growth Based on a Hierarchical Diffusion Model. Appearing in: Applied Stochastic Models in Business and Industry.
Rosenthal, J. S. (2011). 'Optimal proposal distributions and adaptive MCMC.' Handbook of Markov Chain Monte Carlo (2011): 93-112.