EstParamNormal function

Maximization Of The Log Likelihood In Mixed Stochastic Differential Equations

Maximization Of The Log Likelihood In Mixed Stochastic Differential Equations

Maximization of the loglikelihood of the mixed SDE with Normal distribution of the random effects dXj(t)=(αjβjXj(t))dt+σa(Xj(t))dWj(t)dXj(t)= (\alpha_j- \beta_j Xj(t))dt + \sigma a(Xj(t)) dWj(t), done with likelihoodNormal

EstParamNormal(U, V, K, random, estim.fix, fixed = 0)

Arguments

  • U: matrix of M sufficient statistics U
  • V: list of the M sufficient statistics matrix V
  • K: number of times of observations
  • random: random effects in the drift: 1 if one additive random effect, 2 if one multiplicative random effect or c(1,2) if 2 random effects.
  • estim.fix: 1 if the fixed parameter is estimated, when random 1 or 2 , 0 otherwise
  • fixed: value of the fixed parameter if known (not estimated)

Returns

  • mu: estimated value of the mean

  • Omega: estimated value of the variance

  • BIChere: BIC indicator

  • AIChere: AIC indicator